Embedding Propagation: Smoother Manifold for Few-Shot Classification ECCV 2020

论文题目 Embedding Propagation: Smoother Manifold for Few-Shot Classification ECCV 2020

1分钟思维导图( 来源

Abstract

目前小样本学习(Few-shot Learning,FSL)是非常具有挑战性的,是由于训练集和测试集的分布可能存在不同,产生的分布偏移(distribution shift)会导致较差的泛化性。**流形平滑(Manifold smoothing)**通过扩展决策边界和减少类别表示的噪音(extending the decision boundaries and reducing the noise of the class representations),已经被证明能够解决分布偏移问题。此外,流形平滑是半监督学习和直推学习( transductive learning )算法的一个重要因素。在本文中,作者提出使用表征传播( embedding propagation)作为流形平滑的无监督非参正则化器(unsupervised non-parametric regularizer),用于小样本分类。表征传播利用了特征之间的插值,该特征是由基于相似图的神经网络提取的。通过实验表明。表征传播会产生更平滑的流形表征;也表明在直推式学习上利用表征传播能达到SOTA,在各种小样本的基准测试上。提出的表征传播操作能容易的集成到神经网络的非参数层中。其原文和代码链接如下:

https://arxiv.org/abs/2003.04151​arxiv.org

 

https://github.com/ElementAI/embedding-propagation​github.com

 

Introduction

目前的深度学习方法都依赖于大量的标记数据,而小样本学习对于减少对人为标注的依赖有着巨大的潜力。在这项工作中,使用的方法介于度量学习( metric learning)和迁移学习( transfer learning)。在训练期间,模型尝试使用基于度量的分类器进行微调,学习出通用的特征表示。 本工作表明,重新构建的标签传播进行流形平滑能提高小样本分类性能。不同于之前的方法manifold mixup(ICML 2019),该过程是无监督的,同时能够获取表征之间的高阶交互信息。提出的表征传播(EP),利用了特征之间的插值,该特征是由基于相似图的神经网络提取的。此图是利用径向基函数特征( the features using the radial basis function (RBF))之间的两两相似点进行构建的。该非参结构被称为EPNet。这一改进背后的假设是基于这样一个事实,即使用插值表征会产生更平滑的决策边界已经增加对噪声的鲁棒性。

Proposed Method

Embedding propagation

表征传播的输入数据是由 feature extractor (CNN)得到的特征  ,通过以下的步骤得到输出表征  。首先,对于每一对feature ,计算器欧式距离  以及邻接矩阵  其中  是比例系数,  。下面开始计算对应的拉普拉斯矩阵:

使用经典的标签传播得到传播矩阵P:

最终的表征通过以下公式得到:

其中,可以看作其邻居的带权和。该操作是很容易实现,同时其复杂度相对于对于小样本学习是可以忽略的。

Training procedure

EPNet的训练过程分为两个阶段,如图二所示。首先,该模型使用训练集 进行通常的预训练;然后,进行 episodic training来学习新类别的泛化。在两个阶段中,都是使用相同的feature extractor 来提取图片的特征。

Pre-training phase

如图2(a)所示,使用两个线性分类器训练,参数分别为和。第一个分类器就用来预测在训练集中的label,通过交叉熵优化:

 

另外,增加了自监督损失来取得更robust的表征。因此,使用第二个分类器来预测图片的旋转:

 

其中, 表示输入被旋转后,被softmax预测的概率。 总体的损失函数如下,使用随机梯度下降优化:

 

Episodic Learning phase

如图2(b)所示,经过预训练过程后,进行episodic learning训练。该过程也使用了两个分类器。第一个使用标签传播,损失函数如下:

 

第二个分类器与在预训练阶段基于W-l的分类器相同。优化如下损失:

 

Experimental Results

从结果可以看到EPNet无论在小样本学习和无监督学习设置上,都能取得SOTA效果。同比了几个基于graph的小样本方法,不仅性能更好,同时参数量也较低。具体的实现细节和数据集介绍请参考原文。

Algorithm ablation

其中ROT代表旋转损失,EFT代表表征fine-tuning,LP表示标签传播,EP代表表征传播。可以发现主要的提升在于EP和LP的加入。

Embedding propagation on manifold smoothness

该结果表明EP的加入能产生更平滑的决策边界。

CO2 Emission Related to Experiments

第一次见这个实验,,,在附加材料中,非常环保了。

Personal Thounght

优点:

  1. 提出的方法像是个融合体,提出的EPNet同时利用了预训练和metric-learning的思想,也利用graph上的传播方法,达到了SOTA
  2. 实验做的非常多,特别是消融实验,基本上所有情况都列出了
  3. 最后附加材料中的CO2 Emission Related to Experiments比较interesting,个人第一次见

comments:

  1. 核心观点是流形平滑,但是在方法介绍中却很少提及,缺失一些证明
  2. 有些实验的设置感觉没有说清楚
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
在论文Latent Embedding Feedback and Discriminative Features for Zero-Shot Classification中,作者提出了一种新的零样本分类方法,该方法使用了嵌入反馈机制和判别特征,以提高零样本分类的准确性。在骨干网络方面,作者使用了ResNet-101作为骨干网络。下面是该方法的具体实验步骤和方法: 1. 预处理数据集:将原始图像大小调整为224x224,然后使用ImageNet数据集上的平均值进行标准化。 2. 训练ResNet-101骨干网络:使用ImageNet数据集上的预训练权重对ResNet-101进行微调,以便在零样本分类任务中提取有用的特征。 3. 从训练集中提取特征:利用微调后的ResNet-101,对训练集中的所有图像进行前向传递,并从最后一个卷积层中提取出特征。 4. 计算嵌入向量:将每个类别的特征平均值计算出来,并将其作为该类别的嵌入向量。 5. 训练分类器:使用嵌入向量和训练集中的标签来训练分类器。训练过程使用交叉熵损失函数,并使用随机梯度下降进行优化。 6. 零样本分类:对于每张测试图像,将其从骨干网络中传递,并计算其特征向量。然后,通过计算嵌入向量和特征向量之间的余弦相似度,将其归类到最相似的类别中。 以下是用伪代码表示的方法: ``` # 预处理数据集 preprocess_dataset() # 训练ResNet-101骨干网络 train_backbone_network() # 从训练集中提取特征 extract_features_from_training_set() # 计算嵌入向量 calculate_embedding_vectors() # 训练分类器 train_classifier() # 零样本分类 for each test image: feature_vector = extract_features_from_test_image() predicted_class = classify_image(feature_vector) ``` 以上就是论文Latent Embedding Feedback and Discriminative Features for Zero-Shot Classification中对骨干网络进行微调的具体实验步骤和方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值