SKLEARN NEAREST NEIGHBOR & KNeighborsClassifier

本文介绍了SKLEARN库中的K近邻算法,包括无监督学习的NN算法和有监督学习的KNeighborsClassifier。在NN算法中,详细讨论了如何获取每个样本的最近邻坐标和距离,并提到当训练集中存在缺失值时会引发错误。同时,还探讨了算法的可视化方面。在KNC部分,提到了输出结果。
摘要由CSDN通过智能技术生成

ALGORITHM-NN unsupervised

from sklearn.neighbors import NearestNeighbors
import numpy as np
X = np.array([[-1, -1], [1, 1], [-3, -2], [1, 1], [2, 1], [3, 2]])
nbrs = NearestNeighbors(n_neighbors=2, algorithm='ball_tree').fit(X)
distances, indices = nbrs.kneighbors(X)
print(indices)
print(distances)

OUTPUT

[[0 2]
 [3 1]
 [2 0]
 [3 1]
 [4 1]
 [5 4]]
[[0.         2.23606798]
 [0.         0.        ]
 [0.         2.23606798]
 [0.         0.        ]
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值