DPText-DETR原理及源码解读(二)

理解中。。。

接下来深入最难的DeformableTransformer_Det,这个py文件包含了多个class

DeformableTransformer_Det

DeformableTransformerEncoderLayer

DeformableTransformerEncoder

CirConv 环形卷积

DeformableTransformerDecoderLayer_Det

DeformableTransformerDecoder_Det

# adet/layers/deformable_transformer.py

# ------------------------------------------------------------------------
# Deformable DETR
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------PositionalEncoding2D
import copy
import math
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.init import normal_
from adet.utils.misc import inverse_sigmoid
from adet.modeling.dptext_detr.utils import MLP, gen_point_pos_embed
from .ms_deform_attn import MSDeformAttn  # MultiScaleDeformableAttention
from timm.models.layers import DropPath  # 这里居然用了timm


class DeformableTransformer_Det(nn.Module):
    def __init__(
            self,
            d_model=256,
            nhead=8,
            num_encoder_layers=6,
            num_decoder_layers=6,
            dim_feedforward=1024,
            dropout=0.1,
            activation="relu",
            return_intermediate_dec=False,   # 实例化时为True
            num_feature_levels=4,
            dec_n_points=4,
            enc_n_points=4,
            num_proposals=100,
            num_ctrl_points=16,
            epqm=False,   # 实例化时为True
            efsa=False   # 实例化时为True
    ):
        super().__init__()

        self.d_model = d_model
        self.nhead = nhead
        self.num_proposals = num_proposals
        #  单层编码器
        encoder_layer = DeformableTransformerEncoderLayer(
            d_model,
            dim_feedforward,
            dropout,
            activation,
            num_feature_levels,
            nhead,
            enc_n_points
        )
        # 重复N层编码器
        self.encoder = DeformableTransformerEncoder(encoder_layer, num_encoder_layers)
        #  单层解码器
        decoder_layer = DeformableTransformerDecoderLayer_Det(
            d_model,
            dim_feedforward,
            dropout,
            activation,
            num_feature_levels,
            nhead,
            dec_n_points,
            efsa
        )
        # 重复N层解码器
        self.decoder = DeformableTransformerDecoder_Det(
            decoder_layer,
            num_decoder_layers,
            return_intermediate_dec,
            d_model,
            epqm
        )
        # 4,256。lvl的编码,对2d的PE的补充,用于多尺度场景    
        self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))

        self.bbox_class_embed = None  # 在models.py中赋予具体方法
        self.bbox_embed = None  # 在models.py中赋予具体方法
        self.enc_output = nn.Linear(d_model, d_model)
        self.enc_output_norm = nn.LayerNorm(d_model)

        if not epqm:
            self.pos_trans = nn.Linear(d_model, d_model)
            self.pos_trans_norm = nn.LayerNorm(d_model)

        self.num_ctrl_points = num_ctrl_points
        self.epqm = epqm

        self._reset_parameters()

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)
        for m in self.modules():
            if isinstance(m, MSDeformAttn):
                m._reset_parameters()
        normal_(self.level_embed)

    def get_proposal_pos_embed(self, proposals):
        """
正弦位置编码,一般是正余弦交替的sin(pos/(1000**(2*i/d_model)))、cos(pos/(1000**(2*i/d_model))),其中i为0~d_model/2-1 
这里d_model为64

"""
        num_pos_feats = 64
        temperature = 10000
        scale = 2 * math.pi
        # 0、1、2、...63
        dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=proposals.device)
        # torch.div(dim_t, 2, rounding_mode='trunc') 为0、0、1、1、...31、31
        # 1000**(2*(i=0、0、1、1...、31、31)/(d_model=64))
        dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode='trunc') / num_pos_feats)
        # N, L, 4
        proposals = proposals.sigmoid() * scale
        # N, L, 4, 64
        pos = proposals[:, :, :, None] / dim_t
        # N, L, 256  
        pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4).flatten(2)
        return pos

    def gen_encoder_output_proposals(self, memory, memory_padding_mask, spatial_shapes):
"""
对encoder的输出进行nn.Linear(d_model, d_model)及norm处理;用计算而不是模型的方法计算各个lvl的output_proposals,作为基准,这里相当于anchor?,forward再用模型计算偏移
"""
        N_, S_, C_ = memory.shape
        base_scale = 4.0
        proposals = []
        _cur = 0
        for lvl, (H_, W_) in enumerate(spatial_shapes):
            mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H_ * W_)].view(N_, H_, W_, 1)
            valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)  # 未pad处
            valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)

            grid_y, grid_x = torch.meshgrid(torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
                                            torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device))
            grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)

            scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2)
            grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
            # lvl越大,wh越大
            wh = torch.ones_like(grid) * 0.05 * (2.0 ** lvl)
            
            proposal = torch.cat((grid, wh), -1).view(N_, -1, 4)
            proposals.append(proposal)
            _cur += (H_ * W_)
        output_proposals = torch.cat(proposals, 1) # cat xywh?
        output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True)
        # sigmoid的反操作
        output_proposals = torch.log(output_proposals / (1 - output_proposals))
        output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf'))
        output_proposals = output_proposals.masked_fill(~output_proposals_valid, float('inf'))

        output_memory = memory
        output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0))
        output_memory = output_memory.masked_fill(~output_proposals_valid, float(0))

        """
        self.enc_output = nn.Linear(d_model, d_model)
        self.enc_output_norm = nn.LayerNorm(d_model)
        """
        output_memory = self.enc_output_norm(self.enc_output(output_memory))
        return output_memory, output_proposals

    def get_valid_ratio(self, mask):# 计算wh方向非pad的占比
        _, H, W = mask.shape
        valid_H = torch.sum(~mask[:, :, 0], 1)
        valid_W = torch.sum(~mask[:, 0, :], 1)
        valid_ratio_h = valid_H.float() / H
        valid_ratio_w = valid_W.float() / W
        valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
        return valid_ratio

    def init_control_points_from_anchor(self, reference_points_anchor):
        """
        通过box获得16个点,即显示点生成
        例子
        入参:xywh的torch.tensor([[[0.1,0.1,0.2,0.2]]])
        出参:torch.tensor([[[[0.0,0.0]
                              [0.0286,0.0]
                               ...
                              [0.2,0.0]
                              [0.2,0.2]
                               ...
                              [0.0,0.2]]]])
        """
        # reference_points_anchor: bs, nq, 4
        # return size:
        # - reference_points: (bs, nq, n_pts, 2)
        assert reference_points_anchor.shape[-1] == 4
        # 这里进行了repeat操作,reference_points 维度为 (bs, nq, n_pts, 4),最后的:2操作将其处理为(bs, nq, n_pts, 2)
        reference_points = reference_points_anchor[:, :, None, :].repeat(1, 1, self.num_ctrl_points, 1)
        pts_per_side = self.num_ctrl_points // 2  # 一边8个点
        # x坐标计算,先算0点的起始坐标,后在1-7位放间距,再通过torch.cumsum计算累积和还原上边界各点坐标,下边界通过上边界取对应值
        reference_points[:, :, 0, 0].sub_(reference_points[:, :, 0, 2] / 2)
        reference_points[:, :, 1:pts_per_side, 0] = reference_points[:, :, 1:pts_per_side, 2] / (pts_per_side - 1)
        reference_points[:, :, :pts_per_side, 0] = torch.cumsum(reference_points[:, :, :pts_per_side, 0], dim=-1)
        reference_points[:, :, pts_per_side:, 0] = reference_points[:, :, :pts_per_side, 0].flip(dims=[-1])
        
        # y坐标计算,中心点y值加减半个h
        reference_points[:, :, :pts_per_side, 1].sub_(reference_points[:, :, :pts_per_side, 3] / 2)
        reference_points[:, :, pts_per_side:, 1].add_(reference_points[:, :, pts_per_side:, 3] / 2)

        # :2只保留xy,去掉wh
        reference_points = torch.clamp(reference_points[:, :, :, :2], 0, 1)

        return reference_points

    def forward(self, srcs, masks, pos_embeds, query_embed):
        # prepare input for encoder
        src_flatten = []
        mask_flatten = []
        lvl_pos_embed_flatten = []
        spatial_shapes = []

        # lvl为0、1、2、3,对应4个特征图,做flatten
        for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
            bs, c, h, w = src.shape
            spatial_shape = (h, w)
            spatial_shapes.append(spatial_shape)  #(4,h, w)
            src = src.flatten(2).transpose(1, 2) # (bs, h*w , c)
            mask = mask.flatten(1) # (bs, h*w)
            pos_embed = pos_embed.flatten(2).transpose(1, 2) # (bs, h*w , c)
            # 2d PE+ level PE = 3d PE,注意这里是相加而不是多一维
            lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) # (bs, h*w , c)
            lvl_pos_embed_flatten.append(lvl_pos_embed)
            src_flatten.append(src)  #4个( bs, h*w , c)的list
            mask_flatten.append(mask)
        # torch.cat(a, 1) 表示将列表a(a的每个元素是tensor)在1维上cat,实现1维是h1*w1+h2*w2+h3*w3+h4*w4
        src_flatten = torch.cat(src_flatten, 1)
        mask_flatten = torch.cat(mask_flatten, 1)
        lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
        spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device)
"""
spatial_shapes = torch.tensor([[76,95],[38,48],[19,24],[10,12])
spatial_shapes.new_zeros((1,))=torch.tensor([0])  # 生成单个0
spatial_shapes.prod(1)=torch.tensor([7220,1824,456,120])  # 1方向乘
spatial_shapes.prod(1).cumsum(0)=torch.tensor([7220,9044,9550,9620])  # 0方向加
注意这里 h1*w1+h2*w2+h3*w3+h4*w4= 9620
spatial_shapes.prod(1).cumsum(0)[:-1]=torch.tensor([7220,9044,9550])  # 去掉最后一个
torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))=torch.tensor([0,7220,9044,9550]) # 拼接

"""

        level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
        valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)

        # 编码器encoder
        memory = self.encoder(
            src_flatten,   # ( bs, h1*w1+h2*w2+h3*w3+h4*w4=9620, c=256)
            spatial_shapes,  # (4,2) 2是hw的值
            level_start_index,  # (4)
            valid_ratios,  # (bs, 4,2)
            lvl_pos_embed_flatten,   # 3D (bs,h1*w1+h2*w2+h3*w3+h4*w4=9620,c=256)
            mask_flatten  # (bs,h1*w1+h2*w2+h3*w3+h4*w4)
        )

        # 编码器输出过线性层及norm,获得预设的proposals(相当于每个位置的anchor),prepare input for decoder
        bs, _, c = memory.shape
        output_memory, output_proposals = self.gen_encoder_output_proposals(memory, mask_flatten, spatial_shapes)

"""
models.py中
self.bbox_coord = MLP(self.d_model, self.d_model, 4, 3)
self.bbox_class = nn.Linear(self.d_model, self.num_classes)
self.transformer.bbox_class_embed = self.bbox_class
self.transformer.bbox_embed = self.bbox_coord
"""
        # 根据编码器输出得到class及box的偏移量,+后得到修正的box
        enc_outputs_class = self.bbox_class_embed(output_memory)
        enc_outputs_coord_unact = self.bbox_embed(output_memory) + output_proposals

        # 根据class得分得到top_self.num_proposals 个参考点
        topk = self.num_proposals
        topk_proposals = torch.topk(enc_outputs_class[..., 0], topk, dim=1)[1]
        topk_coords_unact = torch.gather(enc_outputs_coord_unact, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
        topk_coords_unact = topk_coords_unact.detach()
        reference_points = topk_coords_unact.sigmoid()  # (bs, nq, 4)

        if self.epqm:  # 由xywh的box转化为显式的16点坐标
            reference_points = self.init_control_points_from_anchor(reference_points)  # Prior Points Sampling
        else:  # 对topk的box进行正弦位置编码,再过线性层、norm
            # positional queries
            query_pos = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact)))
            query_pos = query_pos[:, :, None, :].repeat(1, 1, query_embed.shape[2], 1)
        init_reference_out = reference_points  # return的初始参考点是编码器输出的topk个box
        # learnable control point content queries
        query_embed = query_embed.unsqueeze(0).expand(bs, -1, -1, -1)

        hs, inter_references = self.decoder(
            query_embed,  # (bs,n_proposals=100,n_ctrl_points=16,d_model=256) 最后2维是nn.Embedding,其他2维是expand和repeat出来的,即在bs、n_proposals维度上不断重复
            reference_points, # epqm时是(bs,nq=100,n_pts=16,2),否则是(bs,nq=100,4)
            memory,  # bs,h1*w1+h2*w2+h3*w3+h4*w4,c 
            spatial_shapes,   # (4,2) 2是hw的值 
            level_start_index, # (4)
            valid_ratios,  # (bs, 4, 2)
            query_pos=query_pos if not self.epqm else None,  #query_pos为(_,_,256,_)
            src_padding_mask=mask_flatten  # (bs,h1*w1+h2*w2+h3*w3+h4*w4)
        )
        inter_references_out = inter_references # return的中间参考点是解码器输出的

        return hs, init_reference_out, inter_references_out, enc_outputs_class, enc_outputs_coord_unact


class DeformableTransformerEncoderLayer(nn.Module):
    def __init__(
            self,
            d_model=256,
            d_ffn=1024,
            dropout=0.1,
            activation="relu",
            n_levels=4,
            n_heads=8,
            n_points=4
    ):
        super().__init__()

        # self attention
        self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
        self.dropout1 = nn.Dropout(dropout)
        self.norm1 = nn.LayerNorm(d_model)

        # ffn
        self.linear1 = nn.Linear(d_model, d_ffn)
        self.activation = _get_activation_fn(activation)
        self.dropout2 = nn.Dropout(dropout)
        self.linear2 = nn.Linear(d_ffn, d_model)
        self.dropout3 = nn.Dropout(dropout)
        self.norm2 = nn.LayerNorm(d_model)

    @staticmethod
    def with_pos_embed(tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward_ffn(self, src):
        src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
        src = src + self.dropout3(src2)
        src = self.norm2(src)
        return src

    def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, padding_mask=None):
"""
output ( bs, h1*w1+h2*w2+h3*w3+h4*w4=9620, c=256)
pos  (bs,h1*w1+h2*w2+h3*w3+h4*w4=9620,c=256)
reference_points [bs,h1*w1+h2*w2+h3*w3+h4*w4,4,2]
spatial_shapes  (4,2)
level_start_index  (4)
padding_mask  (bs,h1*w1+h2*w2+h3*w3+h4*w4)
"""
        # self attention
        src2 = self.self_attn(
            self.with_pos_embed(src, pos),  # (bs,h1*w1+h2*w2+h3*w3+h4*w4=9620,c=256)            reference_points,  #(bs,h1*w1+h2*w2+h3*w3+h4*w4,4,2)
            src, # ( bs, h1*w1+h2*w2+h3*w3+h4*w4=9620, c=256)
            spatial_shapes,  #  (4,2)
            level_start_index,  #(4)
            padding_mask  # (bs,h1*w1+h2*w2+h3*w3+h4*w4)
        )
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        # ffn
        src = self.forward_ffn(src)

        return src


class DeformableTransformerEncoder(nn.Module):
    def __init__(self, encoder_layer, num_layers):
        super().__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers

    @staticmethod
    def get_reference_points(spatial_shapes, valid_ratios, device):
"""
获得编码器的参考点,
输入维度
spatial_shapes [n_l_level=4,2]
valid_ratios [bs, 4,2]
输出维度[bs,h1*w1+h2*w2+h3*w3+h4*w4,4,2],这里valid_ratios先除后乘,这里我之前有个疑问,都已经h1*w1+h2*w2+h3*w3+h4*w4搞到4个尺度了,为什么还要倒数第二维是4,这里和valid_ratios在不同尺度上不同有关,大是在不同尺度上取偏移点时要得到对应参考点的位置
当H_ =10
torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device)
=torch.tensor(0.5,1.5,2.5,...,9.5)
"""

        reference_points_list = []
        for lvl, (H_, W_) in enumerate(spatial_shapes):  # 0.5是取中间位置?
            ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
                                          torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device))
            ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
            ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
            ref = torch.stack((ref_x, ref_y), -1)
            reference_points_list.append(ref)
        reference_points = torch.cat(reference_points_list, 1) # [bs,h1*w1+h2*w2+h3*w3+h4*w4,2]
        reference_points = reference_points[:, :, None] * valid_ratios[:, None] # [bs,h1*w1+h2*w2+h3*w3+h4*w4,4,2]
        return reference_points

    def forward(self, src, spatial_shapes, level_start_index, valid_ratios, pos=None, padding_mask=None):
"""
入参维度参考,都是展平后的
memory = self.encoder(
            src_flatten,   # ( bs, h1*w1+h2*w2+h3*w3+h4*w4=9620, c=256)
            spatial_shapes,  # (4,2)
            level_start_index,  # (4)
            valid_ratios,  # (bs, 4,2)
            lvl_pos_embed_flatten,   # 3D (bs,h1*w1+h2*w2+h3*w3+h4*w4=9620,c=256)
            mask_flatten  # (bs,h1*w1+h2*w2+h3*w3+h4*w4)
        )
"""
        # 6层编码器,注意编码器的reference_points是固定不变的
        output = src
        reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device)
        for _, layer in enumerate(self.layers):
            output = layer(output, pos, reference_points, spatial_shapes, level_start_index, padding_mask)
"""
output ( bs, h1*w1+h2*w2+h3*w3+h4*w4=9620, c=256)
pos  (bs,h1*w1+h2*w2+h3*w3+h4*w4=9620,c=256)
reference_points [bs,h1*w1+h2*w2+h3*w3+h4*w4,4,2]
spatial_shapes  (4,2)
level_start_index  (4)
padding_mask  (bs,h1*w1+h2*w2+h3*w3+h4*w4)
"""
        return output


class CirConv(nn.Module):  # 环形卷积
    def __init__(self, d_model, n_adj=4):
        super(CirConv, self).__init__()
        self.n_adj = n_adj
        self.conv = nn.Conv1d(d_model, d_model, kernel_size=self.n_adj*2+1)
        self.relu = nn.ReLU(inplace=True)
        self.norm = nn.BatchNorm1d(d_model)

        for m in self.modules():
            if isinstance(m, nn.Conv1d):
                m.weight.data.normal_(0.0, 0.01)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            if isinstance(m, nn.BatchNorm1d):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1.0)

    def forward(self, tgt):
        shape = tgt.shape
        tgt = (tgt.flatten(0, 1)).permute(0,2,1).contiguous()  # (bs*nq, dim, n_pts)
        tgt = torch.cat([tgt[..., -self.n_adj:], tgt, tgt[..., :self.n_adj]], dim=2)
"""
这里n_adj为4,假设tgt 为[0,1,2,3,4,5,6,7,8,9]则
[tgt[..., -self.n_adj:], tgt, tgt[..., :self.n_adj]]为[6,7,8,9][0,1,2,3,4,5,6,7,8,9][0,1,2,3]。cat到一起后总长为len(tgt)+2*n_adj
在self.conv中kernel_size=self.n_adj*2+1,则Conv1d后长度为len(tgt)+2*n_adj-(self.n_adj*2+1)+1 = len(tgt)
这里利用包围文字的控制点,相邻的n_adj个点应该有联系,用环形卷积实现这种近邻点的卷积,且头尾也考虑到了

"""
        tgt = self.relu(self.norm(self.conv(tgt)))
        tgt = tgt.permute(0,2,1).contiguous().reshape(shape)
        return tgt


class DeformableTransformerDecoderLayer_Det(nn.Module):
    def __init__(
            self,
            d_model=256,
            d_ffn=1024,
            dropout=0.1,
            activation="relu",
            n_levels=4,
            n_heads=8,
            n_points=4,
            efsa=False
    ):
        super().__init__()

        self.efsa = efsa

        # cross attention
        self.attn_cross = MSDeformAttn(d_model, n_levels, n_heads, n_points)
        self.dropout_cross = nn.Dropout(dropout)
        self.norm_cross = nn.LayerNorm(d_model)

        # intra-group self-attention
        if self.efsa:
            self.attn_intra = nn.MultiheadAttention(d_model, n_heads, dropout=0.)
            self.circonv = CirConv(d_model)
            self.norm_fuse = nn.LayerNorm(d_model)
            self.mlp_fuse = nn.Linear(d_model, d_model)
            self.drop_path = DropPath(0.1)
        else:
            self.attn_intra = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
            self.dropout_intra = nn.Dropout(dropout)
        self.norm_intra = nn.LayerNorm(d_model)


        # inter-group self-attention
        self.attn_inter = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
        self.dropout_inter = nn.Dropout(dropout)
        self.norm_inter = nn.LayerNorm(d_model)

        # ffn
        self.linear1 = nn.Linear(d_model, d_ffn)
        self.activation = _get_activation_fn(activation)
        self.dropout3 = nn.Dropout(dropout)
        self.linear2 = nn.Linear(d_ffn, d_model)
        self.dropout4 = nn.Dropout(dropout)
        self.norm3 = nn.LayerNorm(d_model)

    @staticmethod
    def with_pos_embed(tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward_ffn(self, tgt):
        tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout4(tgt2)
        tgt = self.norm3(tgt)
        return tgt

    def forward(
            self,
            tgt,
            query_pos,
            reference_points,
            src,
            src_spatial_shapes,
            level_start_index,
            src_padding_mask=None
    ):
"""
                output,  # (bs, n_q=100,n_pts=16,c=256)
                query_pos,  # (bs, n_q=100,n_pts=16,c=256)
                reference_points_input, #(bs, n_q, n_pts,4,2)
                src,   # bs,h1*w1+h2*w2+h3*w3+h4*w4,c
                src_spatial_shapes, # (4,2)
                src_level_start_index,  # (4)
                src_padding_mask  # (bs,h1*w1+h2*w2+h3*w3+h4*w4)
"""
        # input size
        # - tgt:        (bs, n_q, n_pts, dim)
        # - query_pos:  (bs, n_q, n_pts, dim)

        # intra-group self-attention 组内自注意力
        if self.efsa:
            shortcut = tgt
            q = k = self.with_pos_embed(tgt, query_pos)
            tgt = self.attn_intra(  # nn.MultiheadAttention(d_model, n_heads, dropout=0.)
                q.flatten(0, 1).transpose(0, 1),
                k.flatten(0, 1).transpose(0, 1),
                tgt.flatten(0, 1).transpose(0, 1),
            )[0].transpose(0, 1).reshape(q.shape)
            tgt_circonv = self.drop_path(self.circonv(shortcut+query_pos))
            tgt = shortcut + self.norm_intra(self.drop_path(tgt) + tgt_circonv)
            tgt = tgt + self.drop_path(self.norm_fuse(self.mlp_fuse(tgt)))
        else:
            q = k = self.with_pos_embed(tgt, query_pos)
            tgt2 = self.attn_intra(
                q.flatten(0, 1).transpose(0, 1),
                k.flatten(0, 1).transpose(0, 1),
                tgt.flatten(0, 1).transpose(0, 1),
            )[0].transpose(0, 1).reshape(q.shape)
            tgt = tgt + self.dropout_intra(tgt2)
            tgt = self.norm_intra(tgt)

        # inter-group self-attention 组间自注意力
        q_inter = k_inter = tgt_inter = torch.swapdims(tgt, 1, 2)  # (bs, n_pts, n_q, dim)
        # self.attn_inter = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
        tgt2_inter = self.attn_inter(
            q_inter.flatten(0, 1).transpose(0, 1),
            k_inter.flatten(0, 1).transpose(0, 1),
            tgt_inter.flatten(0, 1).transpose(0, 1)
        )[0].transpose(0, 1).reshape(q_inter.shape)
        tgt_inter = tgt_inter + self.dropout_inter(tgt2_inter)
        tgt_inter = torch.swapdims(self.norm_inter(tgt_inter), 1, 2)

        # cross attention
        if len(reference_points.shape) == 4:
            reference_points_loc = reference_points[:, :, None, :, :].repeat(1, 1, tgt_inter.shape[2], 1, 1)
        else:
            assert reference_points.shape[2] == tgt_inter.shape[2]
            reference_points_loc = reference_points
        # self.attn_cross = MSDeformAttn(d_model, n_levels, n_heads, n_points)
        tgt2 = self.attn_cross(
            self.with_pos_embed(tgt_inter, query_pos).flatten(1, 2),  # epqm时query_pos为None,(bs,n_q=100*n_pts=16=1600,c=256) 
            reference_points_loc.flatten(1, 2),   #(bs,n_q*n_pts=1600,4,2或4) 
            src,  # bs,h1*w1+h2*w2+h3*w3+h4*w4,c
            src_spatial_shapes, # (4,2)
            level_start_index,  # (4)
            src_padding_mask   # (bs,h1*w1+h2*w2+h3*w3+h4*w4)
        ).reshape(tgt_inter.shape)
        tgt_inter = tgt_inter + self.dropout_cross(tgt2)
        tgt = self.norm_cross(tgt_inter)

        # ffn
        tgt = self.forward_ffn(tgt)

        return tgt


class DeformableTransformerDecoder_Det(nn.Module):
    def __init__(
            self,
            decoder_layer,
            num_layers,
            return_intermediate=False,
            d_model=256,
            epqm=False
    ):
        super().__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers
        self.return_intermediate = return_intermediate
        # hack implementation for iterative bounding box refinement and two-stage Deformable DETR
        self.bbox_embed = None
        self.class_embed = None
        self.ctrl_point_coord = None
        self.epqm = epqm
        if epqm:
            self.ref_point_head = MLP(d_model, d_model, d_model, 2)

    def forward(
            self,
            tgt,
            reference_points,
            src,
            src_spatial_shapes,
            src_level_start_index,
            src_valid_ratios,
            query_pos=None,
            src_padding_mask=None
    ):
"""
入参维度参考:
query_embed,  # (bs,n_proposals=100,n_ctrl_points=16,d_model=256) 最后2维是nn.Embedding,其他2维是expand和repeat出来的,即在bs、n_proposals维度上不断重复
reference_points, # epqm时是(bs,nq=100,n_pts=16,2),否则是(bs,nq=100,4)
memory,  # bs,h1*w1+h2*w2+h3*w3+h4*w4,c 
spatial_shapes,   # (4,2) 2是hw的值 
level_start_index, # (4)
valid_ratios,  # (bs, 4, 2)
query_pos=query_pos if not self.epqm else None,  #query_pos为(_,_,256,_)
src_padding_mask=mask_flatten  # (bs,h1*w1+h2*w2+h3*w3+h4*w4)
其中
query_embed nn.Embedding生成+拓展维度
reference_points 编码器head输出,epqm就转成16点,否则是4点
memory 是编码器输出的feature
query_pos 非epqm时对top box 进行正弦位置编码,epqm时为None
"""

        output = tgt  # bs, n_q, n_pts, 256 可以看出n_proposals就是n_q
        if self.epqm:
            assert query_pos is None
            assert reference_points.shape[-1] == 2

        intermediate = []
        intermediate_reference_points = []
        for lid, layer in enumerate(self.layers):
            if reference_points.shape[-1] == 4:  #xywh
                reference_points_input = reference_points[:, :, None] \
                                         * torch.cat([src_valid_ratios, src_valid_ratios], -1)[:, None]
            else:   #之前很困惑,作者原意可能是想区别一阶段和两阶段,但是上面的代码是两阶段的,也就是其实走不到下面的else。但要注意reference_points在各层解码器中会传递
                # enter here
                assert reference_points.shape[-1] == 2
                if self.epqm:
                    # reference_points: (bs, nq, n_pts, 2)
                    # reference_points_input: (bs, nq, n_pts, 4, 2)
                    reference_points_input = reference_points[:, :, :, None] * src_valid_ratios[:, None, None]
                else:
                    reference_points_input = reference_points[:, :, None] * src_valid_ratios[:, None]

            if self.epqm:
                # embed the explicit point coordinates 正弦位置编码
                query_pos = gen_point_pos_embed(reference_points_input[:, :, :, 0, :])
                # get the positional queries 2层mlp
                query_pos = self.ref_point_head(query_pos) # projection
"""
query_pos 非epqm时对top box 进行正弦位置编码,epqm时为对参考点进行正弦位置编码
"""
      
            output = layer(
                output,  # (bs, n_q=100,n_pts=16,c=256)
                query_pos,  # (bs, n_q=100,n_pts=16,c=256)
                reference_points_input, #(bs, n_q, n_pts,4,2)
                src,   # bs,h1*w1+h2*w2+h3*w3+h4*w4,c
                src_spatial_shapes, # (4,2)
                src_level_start_index,  # (4)
                src_padding_mask  # (bs,h1*w1+h2*w2+h3*w3+h4*w4)
            )

            # update the reference points
            if self.ctrl_point_coord is not None:  # models.py中epqm时为3层mlp,MLP(256,256,2,3),各层解码器共享,更新参考点
                tmp = self.ctrl_point_coord[lid](output)
                tmp += inverse_sigmoid(reference_points)
                tmp = tmp.sigmoid()
                reference_points = tmp.detach()

            if self.return_intermediate:
                intermediate.append(output)
                intermediate_reference_points.append(reference_points)

        if self.return_intermediate:
            # 注意这里,可以把不同层的output和参考点输出
            return torch.stack(intermediate), torch.stack(intermediate_reference_points)

        return output, reference_points   # 这里只返回最后一层的,和上面的return维度不同


def _get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])


def _get_activation_fn(activation):
    """Return an activation function given a string"""
    if activation == "relu":
        return F.relu
    if activation == "gelu":
        return F.gelu
    if activation == "glu":
        return F.glu
    raise RuntimeError(F"activation should be relu/gelu, not {activation}.")

多尺度可变形注意力

# adet/layers/ms_deform_attn.py
# ------------------------------------------------------------------------------------------------
# Deformable DETR
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------------------------------
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
# ------------------------------------------------------------------------------------------------
import warnings
import math

import torch
from torch import nn
import torch.nn.functional as F
from torch.nn.init import xavier_uniform_, constant_
from torch.autograd.function import once_differentiable

from adet import _C

class _MSDeformAttnFunction(torch.autograd.Function):
    @staticmethod
    def forward(ctx, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step):
"""
ctx  #( bs, h1*w1+h2*w2+h3*w3+h4*w4=9620, c=256)拆多头后过Linear得到的value
value_spatial_shapes  # 每个level的hw值(4,2)
value_level_start_index# input_level_start_index (4)
sampling_locations  # 采样点 (N, Len_q, self.n_heads, self.n_levels, self.n_points, 2)
attention_weights  # head中每个采样点的权重 (N, Len_q, self.n_heads, self.n_levels, self.n_points)
self.im2col_step  #=64
"""
        ctx.im2col_step = im2col_step
        output = _C.ms_deform_attn_forward(
            value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, ctx.im2col_step)
        ctx.save_for_backward(value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights)
        return output

    @staticmethod
    @once_differentiable
    def backward(ctx, grad_output):
        value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights = ctx.saved_tensors
        grad_value, grad_sampling_loc, grad_attn_weight = \
            _C.ms_deform_attn_backward(
                value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, grad_output, ctx.im2col_step)

        return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None


def ms_deform_attn_core_pytorch(value, value_spatial_shapes, sampling_locations, attention_weights):
    # 可变形卷积最最核心的地方是C++实现的,这里还提供了Python的版本供参考,主要流程为,sampling_locations处理到[-1,1],基于grid_sample方法在value中采样,乘以attention_weights

    # for debug and test only,
    # need to use cuda version instead
    N_, S_, M_, D_ = value.shape
    _, Lq_, M_, L_, P_, _ = sampling_locations.shape
    value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
    sampling_grids = 2 * sampling_locations - 1  # 值处理到[-1,1]范围作为grid_sample入参
    sampling_value_list = []
    for lid_, (H_, W_) in enumerate(value_spatial_shapes):
        # N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_
        value_l_ = value_list[lid_].flatten(2).transpose(1, 2).reshape(N_*M_, D_, H_, W_)
        # N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2
        sampling_grid_l_ = sampling_grids[:, :, :, lid_].transpose(1, 2).flatten(0, 1)
        # N_*M_, D_, Lq_, P_
        sampling_value_l_ = F.grid_sample(value_l_, sampling_grid_l_,
                                          mode='bilinear', padding_mode='zeros', align_corners=False)
        sampling_value_list.append(sampling_value_l_)
    # (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_, M_, 1, Lq_, L_*P_)
    attention_weights = attention_weights.transpose(1, 2).reshape(N_*M_, 1, Lq_, L_*P_)
    output = (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights).sum(-1).view(N_, M_*D_, Lq_)
    return output.transpose(1, 2).contiguous()


def _is_power_of_2(n):
    if (not isinstance(n, int)) or (n < 0):
        raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)))
    return (n & (n-1) == 0) and n != 0


class MSDeformAttn(nn.Module):
    def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4):
        """
        Multi-Scale Deformable Attention Module
        :param d_model      hidden dimension
        :param n_levels     number of feature levels
        :param n_heads      number of attention heads
        :param n_points     number of sampling points per attention head per feature level 
        这里 默认有4 levels,8head,每head每level有4个采样点,则每个head有4*4=16个采样点
        """
        super().__init__()
        if d_model % n_heads != 0:
            raise ValueError('d_model must be divisible by n_heads, but got {} and {}'.format(d_model, n_heads))
        _d_per_head = d_model // n_heads  # 多头中每头的维度,如256/8
        # you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation
        if not _is_power_of_2(_d_per_head):
            warnings.warn("You'd better set d_model in MSDeformAttn to make the dimension of each attention head a power of 2 "
                          "which is more efficient in our CUDA implementation.")

        self.im2col_step = 64

        self.d_model = d_model
        self.n_levels = n_levels
        self.n_heads = n_heads
        self.n_points = n_points

        self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2)
        self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points)
        self.value_proj = nn.Linear(d_model, d_model)
        self.output_proj = nn.Linear(d_model, d_model)

        self._reset_parameters()

    def _reset_parameters(self):
        constant_(self.sampling_offsets.weight.data, 0.)
        # head=8,就是8个方向采样;n_points=4,就是4个偏移程度
        thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
        grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
        grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat(1, self.n_levels, self.n_points, 1)
        for i in range(self.n_points):
            grid_init[:, :, i, :] *= i + 1  # (n_heads, self.n_levels, self.n_points,2)

        with torch.no_grad():
            self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
        constant_(self.attention_weights.weight.data, 0.)
        constant_(self.attention_weights.bias.data, 0.)
        xavier_uniform_(self.value_proj.weight.data)
        constant_(self.value_proj.bias.data, 0.)
        xavier_uniform_(self.output_proj.weight.data)
        constant_(self.output_proj.bias.data, 0.)

    def forward(self, query, reference_points, input_flatten, input_spatial_shapes, input_level_start_index, input_padding_mask=None):
        """
        :param query                       (N, Length_{query}, C)
        :param reference_points            (N, Length_{query}, n_levels, 2), range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area
                                        or (N, Length_{query}, n_levels, 4), add additional (w, h) to form reference boxes
        :param input_flatten               (N, \sum_{l=0}^{L-1} H_l \cdot W_l, C)
        :param input_spatial_shapes        (n_levels, 2), [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
        :param input_level_start_index     (n_levels, ), [0, H_0*W_0, H_0*W_0+H_1*W_1, H_0*W_0+H_1*W_1+H_2*W_2, ..., H_0*W_0+H_1*W_1+...+H_{L-1}*W_{L-1}]
        :param input_padding_mask          (N, \sum_{l=0}^{L-1} H_l \cdot W_l), True for padding elements, False for non-padding elements
        :return output                     (N, Length_{query}, C)
        """
        N, Len_q, _ = query.shape
        N, Len_in, _ = input_flatten.shape
        assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]).sum() == Len_in

        value = self.value_proj(input_flatten)  # 基于Linear(256,256)得到Value
        if input_padding_mask is not None:
            value = value.masked_fill(input_padding_mask[..., None], float(0))
        # 拆多头,并通过2个线性层得到偏移量和权重Weight
        value = value.view(N, Len_in, self.n_heads, self.d_model // self.n_heads)
        sampling_offsets = self.sampling_offsets(query).view(N, Len_q, self.n_heads, self.n_levels, self.n_points, 2)
        attention_weights = self.attention_weights(query).view(N, Len_q, self.n_heads, self.n_levels * self.n_points)
        # 这里可以看出softmax 是在self.n_levels * self.n_points=4*4=16中进行的,head间无关
        attention_weights = F.softmax(attention_weights, -1).view(N, Len_q, self.n_heads, self.n_levels, self.n_points)

        # N, Len_q, n_heads, n_levels, n_points, 2
        # 参考点基础上进行偏移得到采样点
        if reference_points.shape[-1] == 2:
            offset_normalizer = torch.stack([input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1)
            sampling_locations = reference_points[:, :, None, :, None, :] \
                                 + sampling_offsets / offset_normalizer[None, None, None, :, None, :]
        elif reference_points.shape[-1] == 4:
            sampling_locations = reference_points[:, :, None, :, None, :2] \
                                 + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
        else:
            raise ValueError(
                'Last dim of reference_points must be 2 or 4, but get {} instead.'.format(reference_points.shape[-1]))
        output = _MSDeformAttnFunction.apply(
            value, input_spatial_shapes, input_level_start_index, sampling_locations, attention_weights, self.im2col_step)
        # 输出还要过个Linear
        output = self.output_proj(output)
        return output

八、Batch 图片推理实验

先说结论:随batch增大,显存占用变高,但单张平均推理时间几乎没变。阅读时可跳过这部分实验记录。

DPText-DETR原理及源码解读(一)中提到:

(1)单张图片predict的速度及显存约为0.2s/张,2.5G

(2)推理时调用的方法,最底层的脚本在DefaultPredictor,用注册机制获取模型,然后进行推理。

        现在想要实验一下,解决以下问题:

Q:多张图推理的速度如何,是0.2*N还是更小一点?多张图推理的显存如何,16G的卡最多能接受batch为多大?

先改DefaultPredictor的def __call__,试试多张相同的图。修改self.model的入参为4张图时速度

self.model的入参list数量显存N张推理速度

单张平均耗时

12.5G0.2s0.2s
45.6G0.5s0.125S
810G1s0.125S
1012g1.2S0.12S

        为快速评估方案,采用的是以下基于同一个inputs的方案,少了不同图片的约需要0.063的self.aug.get_transform的处理最大最小长宽时间。

        

inputs = {"image": image, "height": height, "width": width}
predictions = self.model([inputs])[0]
#改成
predictions = self.model([inputs,inputs,inputs,inputs,......])[0]

        令人伤心的是,增大batch_size虽然增大了显存,但是并不能有效并行提速,其他人也遇到了类似的问题。batchsize大小对训练速度的影响_batchsize越大训练越快吗_Golden-sun的博客-CSDN博客

yolov5多batch模型推理相比单batch没有缩短 · Issue #I6MHX2 · Ascend/modelzoo - Gitee.com

      一个可能的原因是数据处理占用了大部分耗时,在DefaultPredictor的def __call__、class TransformerPureDetector的forward 都打印耗时,10张图片(在self.model中输入多个)总耗时1.02s,较大的耗时分布如下:

总耗时1.02
self.aug.get_transform 1张图0.063将输入图片处理到长宽在1000-1800之间,测试图尺寸为2350x3037
TransformerPureDetector 中preprocess_image 10张图0.051
TransformerPureDetector 中self.dptext_detr 10张图0.82
TransformerPureDetector 中self.inference10张图0.017

分析下来,只有dptext_detr 可能存在一点加速空间,内部耗时如下:

self.backbone 10张图0.25cnn
self.input_proj等 10张图0.15处理为通道为256的4个特征图
self.transformer 10张图0.58编解码器

Q:float32能换成float16吗,对速度和精度的有何影响?

九、QA

Q:编解码器都用到了可变形注意力机制,入参有什么区别,尤其是query的区别

先看一下MSDeformAttn方法的forward描述

class  MSDeformAttn(d_model, n_levels, n_heads, n_points):
    ......
    def forward(self, query, reference_points, input_flatten, input_spatial_shapes, input_level_start_index, input_padding_mask=None):
        """
        :param query                       (N, Length_{query}, C)
        :param reference_points            (N, Length_{query}, n_levels, 2), range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area
                                        or (N, Length_{query}, n_levels, 4), add additional (w, h) to form reference boxes
        :param input_flatten               (N, \sum_{l=0}^{L-1} H_l \cdot W_l, C)
        :param input_spatial_shapes        (n_levels, 2), [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
        :param input_level_start_index     (n_levels, ), [0, H_0*W_0, H_0*W_0+H_1*W_1, H_0*W_0+H_1*W_1+H_2*W_2, ..., H_0*W_0+H_1*W_1+...+H_{L-1}*W_{L-1}]
        :param input_padding_mask          (N, \sum_{l=0}^{L-1} H_l \cdot W_l), True for padding elements, False for non-padding elements
        :return output                     (N, Length_{query}, C)

然后看一下编解码器的入参维度,可以看到src维度是一样的,区别在于:

1.query在编码器中是每个层的每个点,数量为h1*w1+h2*w2+h3*w3+h4*w4=9620,在解码器中是设置的最大文本数*每个文本的控制点数,数量为n_q=100*n_pts=16=1600

2.编码器的参考点是xy,解码器的参考点可能是xywh

# 编码器----------------
self.with_pos_embed(src, pos),  # (bs,h1*w1+h2*w2+h3*w3+h4*w4=9620,c=256)

reference_points,  #(bs,h1*w1+h2*w2+h3*w3+h4*w4,4,2)
src, # ( bs, h1*w1+h2*w2+h3*w3+h4*w4=9620, c=256)

spatial_shapes,  #  (4,2)
level_start_index,  #(4)
padding_mask  # (bs,h1*w1+h2*w2+h3*w3+h4*w4)


# 解码器----------------
self.with_pos_embed(tgt_inter, query_pos).flatten(1, 2),  # epqm时query_pos为None,(bs,n_q=100*n_pts=16=1600,c=256)

reference_points_loc.flatten(1, 2),   #(bs,n_q*n_pts=1600,4,2或4)
src,  # bs,h1*w1+h2*w2+h3*w3+h4*w4,c

src_spatial_shapes, # (4,2)
level_start_index,  # (4)
src_padding_mask   # (bs,h1*w1+h2*w2+h3*w3+h4*w4)

Q:DETR中的FFN

图中彩色方框其实是每个点的高维特征表达,FFN是2个线性层

Q:Object queries 的QK为什么还要相加,为什么还要加到交叉attention中

相加是query+position,大概是自注意力后位置信息弱了,要加强一下?

Q:Q特征哪来的

看上面对MSDeformAttn的解释,编码器是每层特征图的每个网格点,解码器是编码器给的proposal或embedding出来的

Q:训练好的模型,Object queries还能改来改去,这是任意伸缩的?nn.Embedding实现可以瞎改吗

其实改的是编码器proposal的数量,而不是embedding

Q:EFSA(Enhanced Factorized Self-Attention 增强的因子化自我注意):进行环形引导。通过循环卷积(环形卷积)引入局部关注

就是拿个一维卷积,每n个交换下信息得到一个输出,然后滑窗。环形是补充了一下头尾的信息

 Q:为何检测头部的回归分支预测的是偏移量而非绝对坐标值?

Deformable DETR: 基于稀疏空间采样的注意力机制,让DCN与Transformer一起玩! - 知乎

“采样点的位置是基于参考点和对应的坐标偏移量计算出来的,也就是说采样特征是分布在参考点附近的,既然这里需要由采样特征回归出bbox的位置,那么预测相对于参考点的偏移量就会比直接预测绝对坐标更易优化,更有利于模型学习

总之就是由于参考点的设置,这样优化更容易

Q:各通道之间怎么组合呢

每个query在各个通道间取参考点及其采样点,及query是在各个层间

Q: 源码中有没有对推理时的尺寸大小做限制,避免输入太大时显存溢出OOM

有的,参数见配置文件yaml的MIN_SIZE_TEST、MAX_SIZE_TEST,具体实现在detectron中

Q:3中颜色有啥说法,为什么从彩色变成了统一

画图好看?

————————————————————

Q:模型3的2个解码器的输入输出

Q:模型3的2个解码器交换了什么信息,即图中的红绿线

Q:detectron2的CfgNode

Q:# 4>4 应该没执行这个if下的操作

 Q:为啥分解自注意力可以降低计算量

不得不看!降低Transformer复杂度的方法-CSDN博客

看代码也还没理解

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值