评价指标——精确度,召回率,真阳率,假阳率,P-R曲线,ROC曲线,AUC

本文介绍了精确度、召回率、假阳率、真阳率等评估模型性能的指标,详细阐述了P-R曲线、ROC曲线的概念及其重要性。同时提到了BEP、Fβ度量、AUC等评估标准,并讨论了代价敏感错误率、FPPW、FPPI以及fppi-missrate曲线在不同场景的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.定义

精确度(precision)/查准率:TP/(TP+FP)=TP/P    预测为真中,实际为正样本的概率

召回率(recall)/查全率:TP/(TP+FN)  正样本中,被识别为真的概率

假阳率(False positive rate):FPR = FP/(FP+TN)  负样本中,被识别为真的概率

真阳率(True positive rate):TPR = TP/(TP+FN)  正样本中,能被识别为真的概率

准确率(accuracy):ACC =(TP+TN)/(P+N) 所有样本中,能被正确识别的概率

宏查X率:先计算查X率,后计算平均

微查X率:先计算TP等平均,后计算查X率

丢失率(missrate )/漏警率:MA = 1-recall=FN/(TP+FN)

虚警率(FalseAlarm ):FA=FP/(FP+TP)

ground truch:TP+FN

model result:TP+FP

P:precision,预测正确的个数/测试总个数

AP:average precision,每一类别P值的平均值

MAP:mean average precision,对所有类别的AP取均值</

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值