机器学习原理之KNN算法以及sklearn实现Iris鸢尾花分类

本文介绍了KNN算法的基本原理,包括通过寻找最近邻进行分类的思路,以及常用的距离度量标准如欧氏距离和曼哈顿距离。讨论了算法的时间和空间复杂度,并指出其在大数据量时的挑战。接着,文章详细展示了如何使用Python的sklearn库实现KNN算法,以Iris鸢尾花数据集为例进行分类,同时提到了涉及的sklearn模块和函数。
摘要由CSDN通过智能技术生成

一、KNN算法原理

KNN(k-nearest neighbor)算法是一种基本的分类与回归算法比较简单、直观:从给定的训练数据集中找出距离新输入的实例最近的k个实例,然后在这k个实例中类别数量最多的那个类就是我们新输入实例的最终分类结果。
伪代码:
对于输入训练集:Train={(x1,y1),(x2,y2)…(xn,yn)} 其中x为实例向量 y为该组数据对应的分类标签
输出:给定新实例x的类别 y∈{y1,y2,y3…yn}
(1)根据给定的距离度量标准,在训练集Train中找到与实例x最近的k个点;
(2)根据分类决策规则决定x的类别y:
k个样本中,最多的类为实例x的类标签。
常用的距离度量
在这里插入图片描述
(1)p>=1,当p=2时,该距离称作为欧氏距离
(2)p=1时,该距离称作曼哈顿距离,一般常用的p取2
knn的优缺点:
算法的时间复杂度和空间复杂度在数据量很大的时候会非常的大,但是准确率会比较好,并且受异常值的影响也不会很大。

二、基于python的sklearn包的实现

流程图实现如下:(结合代码查看)
在这里插入图片描述
数据包是鸢尾花数据,是原来就收集好了的数据
sklearn模块的api链接 https://scikit-learn.org/stable/
这里用到了model_selection(交叉检验function)、preprocessing(标准化function)、以及neighbors包(knn实例化)
代码如下

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值