注意点:本案例为手动实现感知器模型,激活函数为阶跃函数。其中
map(lambda x, w: x * w, input_vec, self.weights)
将input_vec映射为x,self.weights映射为w
①list(map(lambda x, w: x * w, input_vec, self.weights))
将结果转化为列表[(x1,w1),(x2,w2),(x3,w3)...(xn,wn)]
reduce(lambda a, b: a + b,①, 0.0)
将①映射为a,0.0映射为b,其中0.0为初始化偏执b0
from functools import reduce
class Perceptron():
def __init__(self, input_num, activator):
'''
初始化感知器,设置输入参数的个数,以及激活函数。
激活函数的类型为double -> double
'''
self.activator = activator
# 权重向量初始化为0
self.weights = [0.0 for _ in range(input_num)]
# 偏置项初始化为0
self.bias = 0.0
def __str__(self):
'''
打印学习到的权重、偏置项
'''
return 'weights\t:%s\nbias\t:%f\n' % (self.weights, self.bias)
def predict(self, input_vec):
'''
输入向量,输出感知器的计算结果
'''
# 把input_vec[x1,x2,x3...]和weights[w1,w2,w3,...]打包在一起
# 变成[(x1,w1),(x2,w2),(x3,w3),...]
# 然后利用map函数计算[x1*w1, x2*w2, x3*w3]
# 最后利用reduce求和
return self.activator(
reduce(lambda a, b: a + b,list(map(lambda x, w: x * w, input_vec, self.weights)), 0.0) + self.bias)
def train(self, input_vecs, labels, iteration, rate):
'''
输入训练数据:一组向量、与每个向量对应的label;以及训练轮数、学习率
'''
for i in range(iteration):
self._one_iteration(input_vecs, labels, rate)
def _one_iteration(self, input_vecs, labels, rate):
'''
一次迭代,把所有的训练数据过一遍
'''
# 把输入和输出打包在一起,成为样本的列表[(input_vec, label), ...]
# 而每个训练样本是(input_vec, label)
samples = zip(input_vecs, labels)
# 对每个样本,按照感知器规则更新权重
for (input_vec, label) in samples:
# 计算感知器在当前权重下的输出
output = self.predict(input_vec)
# 更新权重
self._update_weights(input_vec, output, label, rate)
def _update_weights(self, input_vec, output, label, rate):
'''
按照感知器规则更新权重
'''
# 把input_vec[x1,x2,x3,...]和weights[w1,w2,w3,...]打包在一起
# 变成[(x1,w1),(x2,w2),(x3,w3),...]
# 然后利用感知器规则更新权重
delta = label - output
self.weights = list(map(lambda x, w: w + rate * delta * x, input_vec, self.weights))
# 更新bias
self.bias += rate * delta
利用这个感知器类去实现and函数
def f(x):
return 1 if x>0 else 0
def gettrain():
input_vec= [[1,1], [0,0], [1,0], [0,1]]
lables=[1,0,0,0]
return input_vec,lables
def train_preception():
p=Perception(2,f)
input_vec,lables=gettrain()
p.train(input_vec,lables,10,0.1)
return p
if __name__ == '__main__':
ans=train_preception()
print(ans)
print('1 and 1 = %d' % ans.predict([1, 1]))
print('0 and 0 = %d' % ans.predict([0, 0]))
print('1 and 0 = %d' % ans.predict([1, 0]))
print('0 and 1 = %d' % ans.predict([0, 1]))