《深度学习实战笔记》-一、感知器

注意点:本案例为手动实现感知器模型,激活函数为阶跃函数。其中

map(lambda x, w: x * w, input_vec, self.weights)

将input_vec映射为x,self.weights映射为w

①list(map(lambda x, w: x * w, input_vec, self.weights))

将结果转化为列表[(x1,w1),(x2,w2),(x3,w3)...(xn,wn)]

reduce(lambda a, b: a + b,①, 0.0)

将①映射为a,0.0映射为b,其中0.0为初始化偏执b0

from functools import reduce

class Perceptron():
    def __init__(self, input_num, activator):
        '''
        初始化感知器,设置输入参数的个数,以及激活函数。
        激活函数的类型为double -> double
        '''
        self.activator = activator
        # 权重向量初始化为0
        self.weights = [0.0 for _ in range(input_num)]
        # 偏置项初始化为0
        self.bias = 0.0
    def __str__(self):
        '''
        打印学习到的权重、偏置项
        '''
        return 'weights\t:%s\nbias\t:%f\n' % (self.weights, self.bias)
    def predict(self, input_vec):
        '''
        输入向量,输出感知器的计算结果
        '''
        # 把input_vec[x1,x2,x3...]和weights[w1,w2,w3,...]打包在一起
        # 变成[(x1,w1),(x2,w2),(x3,w3),...]
        # 然后利用map函数计算[x1*w1, x2*w2, x3*w3]
        # 最后利用reduce求和
        return self.activator(
            reduce(lambda a, b: a + b,list(map(lambda x, w: x * w, input_vec, self.weights)), 0.0) + self.bias)
    def train(self, input_vecs, labels, iteration, rate):
        '''
        输入训练数据:一组向量、与每个向量对应的label;以及训练轮数、学习率
        '''
        for i in range(iteration):
            self._one_iteration(input_vecs, labels, rate)
    def _one_iteration(self, input_vecs, labels, rate):
        '''
        一次迭代,把所有的训练数据过一遍
        '''
        # 把输入和输出打包在一起,成为样本的列表[(input_vec, label), ...]
        # 而每个训练样本是(input_vec, label)
        samples = zip(input_vecs, labels)
        # 对每个样本,按照感知器规则更新权重
        for (input_vec, label) in samples:
            # 计算感知器在当前权重下的输出
            output = self.predict(input_vec)
            # 更新权重
            self._update_weights(input_vec, output, label, rate)
    def _update_weights(self, input_vec, output, label, rate):
        '''
        按照感知器规则更新权重
        '''
        # 把input_vec[x1,x2,x3,...]和weights[w1,w2,w3,...]打包在一起
        # 变成[(x1,w1),(x2,w2),(x3,w3),...]
        # 然后利用感知器规则更新权重
        delta = label - output
        self.weights = list(map(lambda x, w: w + rate * delta * x, input_vec, self.weights))
        # 更新bias
        self.bias += rate * delta

利用这个感知器类去实现and函数

def f(x):
    return 1 if x>0 else 0
def gettrain():
    input_vec= [[1,1], [0,0], [1,0], [0,1]]
    lables=[1,0,0,0]
    return  input_vec,lables
def train_preception():
    p=Perception(2,f)
    input_vec,lables=gettrain()
    p.train(input_vec,lables,10,0.1)
    return p
if __name__ == '__main__':
    ans=train_preception()
    print(ans)
    print('1 and 1 = %d' % ans.predict([1, 1]))
    print('0 and 0 = %d' % ans.predict([0, 0]))
    print('1 and 0 = %d' % ans.predict([1, 0]))
    print('0 and 1 = %d' % ans.predict([0, 1]))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值