用于图像描述的评价指标CIDEr讲解

参考文献:《CIDEr: Consensus-based Image Description Evaluation》

1. 主要思想

CIDEr是专门用于评价图像描述(image caption)任务的评价指标,当然用于其他相关文本生成类任务也是可以的。相较于常用于文本翻译的评价指标BLEU、ROUGE来说,CIDEr更接近人类去判断两个句子是否相近的原理,因为它利用了TF-IDF来对不同n-gram去赋予不同的权重,直观的来说,即经常出现的词组的权重具有更低的权重,而不常出现的词组则更特殊(具有更大的权重),人们会更注意这些特殊的单词。
例如:
I go to the garden this afternoon.
上述句子中,类似于go to这样的表达是比较常见的,而garden则不会经常出现,需要重点关注。

2. 计算公式

(1) TF-IDF

CIDEr的一个重要思想就是基于TF-IDF去给不同的n-gram赋予不同的权重,TF-IDF的计算公式如下:
g k ( s i j ) = h k ( s i j ) ∑ w l ∈ Ω log ⁡ ( I ∑ I p ∈ I min ⁡ ( 1 , ∑ q h k ( s p q ) ) ) g_k(s_{ij})=\frac{h_k(s_{ij})}{\sum_{w_l\in\Omega}}\log(\frac{I}{\sum_{I_p\in{I}}\min(1,\sum_qh_k(s_{pq})) }) gk(sij)=wlΩhk(sij)log(IpImin(1,qhk(spq))I)
其中,

  • h k ( s i j ) h_k(s_{ij}) hk(sij)表示词组 w i j w_{ij} wij在参考句子 s i j s_{ij} sij中出现的次数, Ω \Omega Ω表示所有n-gram的全部词汇, I I I代表数据集中所有图像的个数(即所有文件的个数)。
  • h k ( s i j ) ∑ w l ∈ Ω \frac{h_k(s_{ij})}{\sum_{w_l\in\Omega}} wlΩhk(sij)代表TF (term frequence),如果一个n-gram在参考句子中出现的次数越多,则TF值越高;
  • log ⁡ ( I ∑ I p ∈ I min ⁡ ( 1 , ∑ q h k ( s p q ) ) ) \log(\frac{I}{\sum_{I_p\in{I}}\min(1,\sum_qh_k(s_{pq}))}) log(IpImin(1,qhk(spq))I)代表IDF (inverse document frequency),如果一个n-gram在所有文档中出现的次数越多,则IDF值越低。

(2)CIDEr

用于计算n-gram的CIDEr_n的计算公式如下:
CIDEr n ( c i , S i ) = 1 m ∑ j g n ( c i ) ⋅ g n ( s i j ) ∥ g n ( c i ) ∥ ∥ g n ( s i j ∥ \text{CIDEr}_n(c_i,S_i)=\frac{1}{m}\sum_j\frac{g^n(c_i)\cdot g^n(s_{ij})}{\parallel g^n(c_i)\parallel \parallel g^n(s_{ij}\parallel } CIDErn(ci,Si)=m1jgn(ci)gn(sijgn(ci)gn(sij)
和BLEU、ROUGE一样,CIDEr也可以计算不同n-gram的聚合:
CIDEr ( c i , S i ) = ∑ n = 1 N w n CIDEr n ( c i , S i ) \text{CIDEr}(c_i,S_i)=\sum_{n=1}^{N}w_n\text{CIDEr}_n(c_i,S_i) CIDEr(ci,Si)=n=1NwnCIDErn(ci,Si),通常 N = 4 N=4 N=4.

至此,CIDEr的计算公式就出来了。但是单看上述公式,CIDEr的最大值应该为1对吧,但是很多文献中都出现了CIDEr大于1的情况,这是为什么呢?
因为原作者还额外考虑到了有时候会出现不常见单词重复很多次会得到更高的分数的情况,引入了高斯惩罚,并限制预测结果中多次出现某个单词的次数,得到了CIDEr-D

(3) CIDEr-D

CIDEr-D n ( c i , S i ) = 10 m ∑ j e − ( l ( c i ) − l ( s i j ) ) 2 2 δ 2 ⋅ min ⁡ ( g n ( c i ) , g n ( s i j ) ) ⋅ g n ( s i j ) ∥ g n ( c i ) ∥ ∥ g n ( s i j ∥ \text{CIDEr-D}_n(c_i,S_i)=\frac{10}{m}\sum_je^{\frac{-(l(c_i)-l(s_{ij}))^2}{2\delta^2}}\cdot \frac{\min(g^n(c_i),g^n(s_{ij}))\cdot g^n(s_{ij})}{\parallel g^n(c_i)\parallel \parallel g^n(s_{ij}\parallel } CIDEr-Dn(ci,Si)=m10je2δ2(l(ci)l(sij))2gn(ci)gn(sijmin(gn(ci),gn(sij))gn(sij)
可以看到由于前面增加了一个10的倍数,所以理论上CIDEr-D的最大值应该是10,而不是1,这也是一些文献中CIDEr的值大于1的原因啦!

### CIDER评估指标的Python实现 CIDEr (Consensus-based Image Description Evaluation) 是一种用于图像描述评价的度量标准,特别适用于自然语言处理中的图像字幕生成任务。该方法通过计算候选句子与多个参考句子之间的相似度来衡量生成质量。 对于CIDEr的具体实现,在Python中有现成的库可以调用: #### 使用`pycocoevalcap`库实现CIDEr评分 `pycocoevalcap`是一个广泛使用的开源项目,提供了多种针对MS COCO数据集的任务评估工具,其中包括了对CIDEr的支持。下面是如何安装并使用这个库来进行CIDEr打分的例子: ```bash pip install pycocotools git clone https://github.com/tylin/coco-caption.git cd coco-caption/pycocoevalcap/ python setup.py install ``` 接着可以通过以下方式加载模型并对给定的数据进行评估: ```python from pycocoevalcap.cider.cider import Cider import json def evaluate_captions(refs, hyps): cider_scorer = Cider() # refs is a dictionary mapping image ids to reference captions list. # hyps is a dictionary mapping image ids to candidate caption strings. score, scores = cider_scorer.compute_score(gts=refs, res=hyps) return score, scores if __name__ == "__main__": references = { 'img_1': ['a man riding on a horse', 'man rides horse'], 'img_2': ['two dogs playing with toy'] } hypotheses = { 'img_1': 'the person sits on top of an animal', 'img_2': 'dogs are having fun together' } overall_score, individual_scores = evaluate_captions(references, hypotheses) print(f'Overall Score: {overall_score}') print('Individual Scores:', dict(zip(hypotheses.keys(), individual_scores))) ``` 这段代码展示了如何定义参考译文(`references`)和假设翻译(`hypotheses`)作为输入参数传递给`evaluate_captions()`函数,并最终获取整体得分以及每张图片对应的单独分数[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值