对PR图的理解

在学习分类问题的性能度量中,提出了查准率P和查全率R两个概念,可以根据模型结果测算出P值和R值绘制PR曲线,那么PR曲线是怎么绘制出来的呢?
首先我们要理解分类结果混淆矩阵如下:
在这里插入图片描述
其中T=True表示真,F=False表示假,P=Positive表示正例,N=Negative表示反例。这样就可以定义查准率P=TP/TP+FP(准确性)和查全率R=TP/TP+FN(完整性)了。查全率和查准率也是此消彼长的。也即是说查全率越高,查准率越低。我们假设真实的正例数量为GP(Ground-truth Positive),真实的反例为GN(Ground-truth Negative),模型推断正例数量为SP(Suspicious-Positive),模型推断的反例数量为SN(Suspicious-Negative)那么我们可以由以下表达式:
G P + G N = S P + S N GP+GN = SP + SN GP+GN=SP+SN
G P = T P + F N

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值