基尼指数(Gini Impurity)的理解和计算

本文详细解释了基尼指数在机器学习中的应用,通过计算示例说明如何用基尼系数评估样本纯度,并演示了在CART分类树中如何根据Gini系数决定节点划分。重点在于如何利用基尼系数提高模型精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、基尼指数的概念

基尼指数(Gini不纯度)表示在样本集合中一个随机选中的样本被分错的概率。
注意:Gini指数越小表示集合中被选中的样本被参错的概率越小,也就是说集合的纯度越高,反之,集合越不纯。当集合中所有样本为一个类时,基尼指数为0.

二、基尼指数的计算公式

基尼指数的计算公式为:
在这里插入图片描述

三、计算示例

我们分别来计算一下决策树中各个节点基尼指数:
在这里插入图片描述
以下excel表格记录了Gini指数的计算过程。
在这里插入图片描述
我们可以看到,GoodBloodCircle的基尼指数是最小的,也就是最不容易犯错误,因此我们应该把这个节点作为决策树的根节点。在机器学习中,CART分类树算法使用基尼指数来代替信息增益比,基尼指数代表了模型的不纯度,基尼指数越小,不纯度越低,特征越好。这和信息增益(比)相反。

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值