faster rcnn中roi_helper.py解读
import numpy as np
import pdb
import math
from . import data_generators
import copy
def calc_iou(R, img_data, C, class_mapping):
bboxes = img_data['bboxes']
(width, height) = (img_data['width'], img_data['height'])
(resized_width, resized_height) = data_generators.get_new_img_size(width, height, C.im_size)
gta = np.zeros((len(bboxes), 4))
for bbox_num, bbox in enumerate(bboxes):
gta[bbox_num, 0] = int(round(bbox['x1'] * (resized_width / float(width))/C.rpn_stride))
gta[bbox_num, 1] = int(round(bbox['x2'] * (resized_width / float(width))/C.rpn_stride))
gta[bbox_num, 2] = int(round(bbox['y1'] * (resized_height / float(height))/C.rpn_stride))
gta[bbox_num, 3] = int(round(bbox['y2'] * (resized_height / float(height))/C.rpn_stride))
x_roi = []
y_class_num = []
y_class_regr_coords = []
y_class_regr_label = []
IoUs = []
for ix in range(R.shape[0]):
(x1, y1, x2, y2) = R[ix, :]
x1 = int(round(x1))
y1 = int(round(y1))
x2 = int(round(x2))
y2 = int(round(y2))
best_iou = 0.0
best_bbox = -1
for bbox_num in range(len(bboxes)):
curr_iou = data_generators.iou([gta[bbox_num, 0], gta[bbox_num, 2], gta[bbox_num, 1], gta[bbox_num, 3]], [x1, y1, x2, y2])
if curr_iou > best_iou:
best_iou = curr_iou
best_bbox = bbox_num
if best_iou < C.classifier_min_overlap:
continue
else:
w = x2 - x1
h = y2 - y1
x_roi.append([x1, y1, w, h])
IoUs.append(best_iou)
if C.classifier_min_overlap <= best_iou < C.classifier_max_overlap:
cls_name = 'bg'
elif C.classifier_max_overlap <= best_iou:
cls_name = bboxes[best_bbox]['class']
cxg = (gta[best_bbox, 0] + gta[best_bbox, 1]) / 2.0
cyg = (gta[best_bbox, 2] + gta[best_bbox, 3]) / 2.0
cx = x1 + w / 2.0
cy = y1 + h / 2.0
tx = (cxg - cx) / float(w)
ty = (cyg - cy) / float(h)
tw = np.log((gta[best_bbox, 1] - gta[best_bbox, 0]) / float(w))
th = np.log((gta[best_bbox, 3] - gta[best_bbox, 2]) / float(h))
else:
print('roi = {}'.format(best_iou))
raise RuntimeError
class_num = class_mapping[cls_name]
class_label = len(class_mapping) * [0]
class_label[class_num] = 1
y_class_num.append(copy.deepcopy(class_label))
coords = [0] * 4 * (len(class_mapping) - 1)
labels = [0] * 4 * (len(class_mapping) - 1)
if cls_name != 'bg':
label_pos = 4 * class_num
sx, sy, sw, sh = C.classifier_regr_std
coords[label_pos:4+label_pos] = [sx*tx, sy*ty, sw*tw, sh*th]
labels[label_pos:4+label_pos] = [1, 1, 1, 1]
y_class_regr_coords.append(copy.deepcopy(coords))
y_class_regr_label.append(copy.deepcopy(labels))
else:
y_class_regr_coords.append(copy.deepcopy(coords))
y_class_regr_label.append(copy.deepcopy(labels))
if len(x_roi) == 0:
return None, None, None, None
X = np.array(x_roi)
Y1 = np.array(y_class_num)
Y2 = np.concatenate([np.array(y_class_regr_label),np.array(y_class_regr_coords)],axis=1)
return np.expand_dims(X, axis=0), np.expand_dims(Y1, axis=0), np.expand_dims(Y2, axis=0), IoUs
def apply_regr(x, y, w, h, tx, ty, tw, th):
try:
cx = x + w/2.
cy = y + h/2.
cx1 = tx * w + cx
cy1 = ty * h + cy
w1 = math.exp(tw) * w
h1 = math.exp(th) * h
x1 = cx1 - w1/2.
y1 = cy1 - h1/2.
x1 = int(round(x1))
y1 = int(round(y1))
w1 = int(round(w1))
h1 = int(round(h1))
return x1, y1, w1, h1
except ValueError:
return x, y, w, h
except OverflowError:
return x, y, w, h
except Exception as e:
print(e)
return x, y, w, h
def apply_regr_np(X, T):
try:
x = X[0, :, :]
y = X[1, :, :]
w = X[2, :, :]
h = X[3, :, :]
tx = T[0, :, :]
ty = T[1, :, :]
tw = T[2, :, :]
th = T[3, :, :]
cx = x + w/2.
cy = y + h/2.
cx1 = tx * w + cx
cy1 = ty * h + cy
w1 = np.exp(tw.astype(np.float64)) * w
h1 = np.exp(th.astype(np.float64)) * h
x1 = cx1 - w1/2.
y1 = cy1 - h1/2.
x1 = np.round(x1)
y1 = np.round(y1)
w1 = np.round(w1)
h1 = np.round(h1)
return np.stack([x1, y1, w1, h1])
except Exception as e:
print(e)
return X
def non_max_suppression_fast(boxes, probs, overlap_thresh=0.9, max_boxes=300):
if len(boxes) == 0:
return []
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
np.testing.assert_array_less(x1, x2)
np.testing.assert_array_less(y1, y2)
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
pick = []
area = (x2 - x1) * (y2 - y1)
idxs = np.argsort(probs)
while len(idxs) > 0:
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
xx1_int = np.maximum(x1[i], x1[idxs[:last]])
yy1_int = np.maximum(y1[i], y1[idxs[:last]])
xx2_int = np.minimum(x2[i], x2[idxs[:last]])
yy2_int = np.minimum(y2[i], y2[idxs[:last]])
ww_int = np.maximum(0, xx2_int - xx1_int)
hh_int = np.maximum(0, yy2_int - yy1_int)
area_int = ww_int * hh_int
area_union = area[i] + area[idxs[:last]] - area_int
overlap = area_int/(area_union + 1e-6)
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlap_thresh)[0])))
if len(pick) >= max_boxes:
break
boxes = boxes[pick].astype("int")
probs = probs[pick]
return boxes, probs
import time
def rpn_to_roi(rpn_layer, regr_layer, C, dim_ordering, use_regr=True, max_boxes=300,overlap_thresh=0.9):
regr_layer = regr_layer / C.std_scaling
anchor_sizes = C.anchor_box_scales
anchor_ratios = C.anchor_box_ratios
assert rpn_layer.shape[0] == 1
if dim_ordering == 'th':
(rows,cols) = rpn_layer.shape[2:]
elif dim_ordering == 'tf':
(rows, cols) = rpn_layer.shape[1:3]
curr_layer = 0
if dim_ordering == 'tf':
A = np.zeros((4, rpn_layer.shape[1], rpn_layer.shape[2], rpn_layer.shape[3]))
elif dim_ordering == 'th':
A = np.zeros((4, rpn_layer.shape[2], rpn_layer.shape[3], rpn_layer.shape[1]))
for anchor_size in anchor_sizes:
for anchor_ratio in anchor_ratios:
anchor_x = (anchor_size * anchor_ratio[0])/C.rpn_stride
anchor_y = (anchor_size * anchor_ratio[1])/C.rpn_stride
if dim_ordering == 'th':
regr = regr_layer[0, 4 * curr_layer:4 * curr_layer + 4, :, :]
else:
regr = regr_layer[0, :, :, 4 * curr_layer:4 * curr_layer + 4]
regr = np.transpose(regr, (2, 0, 1))
X, Y = np.meshgrid(np.arange(cols),np. arange(rows))
A[0, :, :, curr_layer] = X - anchor_x/2
A[1, :, :, curr_layer] = Y - anchor_y/2
A[2, :, :, curr_layer] = anchor_x
A[3, :, :, curr_layer] = anchor_y
if use_regr:
A[:, :, :, curr_layer] = apply_regr_np(A[:, :, :, curr_layer], regr)
A[2, :, :, curr_layer] = np.maximum(1, A[2, :, :, curr_layer])
A[3, :, :, curr_layer] = np.maximum(1, A[3, :, :, curr_layer])
A[2, :, :, curr_layer] += A[0, :, :, curr_layer]
A[3, :, :, curr_layer] += A[1, :, :, curr_layer]
A[0, :, :, curr_layer] = np.maximum(0, A[0, :, :, curr_layer])
A[1, :, :, curr_layer] = np.maximum(0, A[1, :, :, curr_layer])
A[2, :, :, curr_layer] = np.minimum(cols-1, A[2, :, :, curr_layer])
A[3, :, :, curr_layer] = np.minimum(rows-1, A[3, :, :, curr_layer])
curr_layer += 1
all_boxes = np.reshape(A.transpose((0, 3, 1,2)), (4, -1)).transpose((1, 0))
all_probs = rpn_layer.transpose((0, 3, 1, 2)).reshape((-1))
x1 = all_boxes[:, 0]
y1 = all_boxes[:, 1]
x2 = all_boxes[:, 2]
y2 = all_boxes[:, 3]
idxs = np.where((x1 - x2 >= 0) | (y1 - y2 >= 0))
all_boxes = np.delete(all_boxes, idxs, 0)
all_probs = np.delete(all_probs, idxs, 0)
result = non_max_suppression_fast(all_boxes, all_probs, overlap_thresh=overlap_thresh, max_boxes=max_boxes)[0]
return result