摘要:神经可穿戴设备能够为飞行员和驾驶员提供监测嗜睡和健康的功能。当前的神经可穿戴设备前景广阔,但大多数需要湿电极和笨重的电子设备。本项工作展示了使用入耳式干电极耳机和紧凑硬件来监测嗜睡状态的方法。该系统集成了用于干式、通用型耳机的增材制造技术、现有的无线电子设备和离线分类算法。记录了九名受试者在进行嗜睡诱导任务时的35小时电生理数据。支持向量机分类器在评估已见过的用户时准确率为93.2%,在评估从未见过的用户时准确率为93.3%。这些结果表明,无线、干式、通用型耳机在分类嗜睡状态方面的准确率与现有最先进的湿电极入耳式和头皮系统相当。此外,这项工作还展示了在未来电生理应用中实现基于人群训练的分类的可行性。
1. 引言
操作重型机械时,嗜睡与疲劳状态极有可能危及生命。据估算,美国每年有超过16.5%的致命车祸涉及酒驾,导致8000多人丧生,并造成高达1090亿美元的经济损失。除了个人与商业(如卡车运输)事故外,美国国家安全委员会还将疲劳列为建筑和采矿行业的首要风险。尽管这些事故风险可通过常规风险评估来预防,但疲惫不堪的个体往往难以在灾难发生前充分认识到自身状态的恶化。为此,嗜睡监测技术应运而生,它们利用基于摄像头的眼动追踪、转向轨迹传感器或电生理记录设备等手段。其中,眼动追踪在汽车环境中表现出色,但易受太阳镜等障碍物遮挡;而转向传感器则在崎岖道路上可能产生误报。相比之下,以用户为中心的记录方法,如随身相机、光电容积脉搏波描记法(PPG)、皮肤电活动、心电图(ECG)、眼电图(EOG)和脑电图(EEG),因其便携性和适应性强,在专业工作环境中日益受到青睐。这些技术已被融入各种设备形态中,如眼动追踪眼镜、PPG/ExG追踪头盔以及入耳式ExG传感器等。在这些方法中,ExG通常展现出最高的嗜睡检测精度。
表面脑电图(EEG)作为一种安全、无创的技术,能够监测头皮上的大脑电活动。在临床上,EEG主要用于监测和诊断与睡眠和癫痫相关的神经系统疾病。传统临床系统采用大型的金(Au)和银/氯化银(Ag/AgCl)电极阵列,这些电极通过形成电容界面(Au)或法拉第界面(Ag/AgCl)来确保稳定的电极-皮肤接触。然而,湿电极阵列往往体积庞大且脆弱,不适合日常使用,且长期使用需皮肤准备,易导致皮肤刺激和损伤。为促进实验室外应用并简化临床操作,最新的可穿戴EEG监测系统致力于开发更小巧的湿电极阵列(如cEEGgrid)及无需水凝胶的干电极技术,将电子元件与电极集成于耳机形态,并配备便于日常使用的软件包。尽管改进的湿电极系统能提供长时间的隐蔽EEG监测,但仍需水凝胶应用,限制了其日常便利性。干电极系统则在研究、商业及业余爱好者领域展现了卓越的神经信号记录能力,广泛应用于疾病监测、脑机接口(BCI)及冥想指导等领域。随着商业化进程的推进,无线EEG系统正被开发并部署于更多元的环境中。尽管如此,最轻便的系统仍采用干电极,尽管减少了设置时间,但通常仍需皮肤清洁和电极表面处理,且相关软件包需专业培训后方可使用。此外,耳机电子设备更适用于研究和临床环境,而非日常公共使用。
耳道内的离散、多通道EEG记录技术已得到验证,其最新进展聚焦于听筒设计、电极材料以及多传感器阵列的优化。耳道作为传感器位置的理想选择,因其机械稳定性强且具备丰富的记录模式。入耳式传感器和电极能够记录颞叶活动、血氧饱和度、头部运动及咬肌活动,适用于多模态传感,尤其在不需要高空间覆盖的情况下表现尤为出色。尽管某些应用可能将肌肉活动或耳道变形视为干扰信号,但这些信号在其他ExG应用场景中可能具有潜在价值。需注意的是,与广泛覆盖的头皮阵列相比,耳内及耳周EEG在收集空间编码大脑活动方面存在本质上的限制。许多成功的设计利用涂有水凝胶的柔性PCB阵列或定制听筒来记录ExG特征,如EOG、低频EEG(1-30Hz)及诱发电位(40-80Hz)。这些基于湿电极的定制听筒系统验证了耳内监测在注意力、癫痫发作、整夜睡眠监测及睡眠阶段分类中的可行性。然而,由于采用定制方法,听筒需逐个集成以最小化体积,导致电极定位各异,且皮肤准备和水凝胶使用易引发电极间导电桥接,影响用户舒适度和电极寿命。因此,未来耳内ExG记录的发展将聚焦于用户通用听筒设计、干电极、无线电子设备及免维护电极材料的应用。
最新一代用户通用耳机集成了湿电极、干电极、PPG及/或化学传感器,在脑状态与活动分类中展现出高度准确性。基于干电极的耳内ExG记录与湿电极在低频神经节律、诱发电位及EOG方面的表现相当。尽管干电极因较高的电极-皮肤阻抗(ESI)界面而可能更易受噪声影响,但其省去了水凝胶的使用,简化了听筒操作过程,提升了用户舒适度。为在舒适性与低ESI之间找到平衡点,最先进的干电极技术采用了多种解决方案,包括特殊材料、导电复合材料、电容式界面、固体凝胶及高表面积3D电极(如微针、指状电极和纳米线)。导电柔性复合材料如镀银玻璃硅胶和碳注入硅胶虽导电性稍逊于PEDOT和IrO,但提供了更高的舒适度。这些材料由聚合物或弹性体制成,可塑性强,适用于解剖学适配电极,并通过添加导电颗粒实现理想的ESI。然而,导电颗粒的增加会限制聚合物交联,可能导致长期使用后开裂。临床和行业标准材料通常为银/氯化银(Ag/AgCl)和金,因其成本效益、生物相容性和电气特性而备受青睐。Ag/AgCl可通过在3D电极上涂漆形成一致的法拉第低阻抗界面,而金电极则因其惰性更强、可重复使用及形成不依赖于导电离子的电容界面而适用于长效ExG记录系统。大多数商用可穿戴设备及现有耳内ExG系统均采用Ag/AgCl、Au或导电复合电极。
电极仅是信号采集的一环,还需神经记录硬件来数字化神经信号并将其传输至处理单元/基站进行离线分析。面向消费者的神经记录硬件往往定制化程度高,具备低带宽、低噪声和低功耗特性。这些设备的带宽通常在100Hz左右,且能实现超低功耗运行(<100μW)。而研究级设备则利用高分辨率和高带宽硬件进行更深入的分析,支持更多通道数、商业无线协议(蓝牙或Wi-Fi)、更高采样率(500-1000Hz)及多种信号模式(如EMG),但功耗也更高(>50mW)。低噪声和高分辨率系统提供了更大的灵活性、可重复的信号处理(如频率分析、时域平均等)及算法开发能力,有助于阐明不同特征类别、减轻干扰并发现新应用。此类系统已被用于构建基于P300响应和稳态诱发电位的BCI系统。在将现有电子设备适配于可穿戴干电极时,需考虑增加的ESI、系统噪声及干扰敏感性对电源需求和下游机器学习算法的影响。采用多功能、高功率电子设备及易于解释、轻量级的经典算法(如逻辑回归、支持向量机、随机森林)是优化传感器与电源的重要第一步。为此,本研究采用高通道数、高带宽系统来探讨ExG电极技术与嗜睡检测之间的关系。
除系统优化外,机器学习算法的选择也决定了系统功能的训练、数据及处理要求。理想的日常ExG系统应即插即用、持续改进,并在无线连接不稳定或大型处理能力受限时(如建筑工地、飞机和卡车)仍能提供反馈。经典算法如逻辑回归、SVM和随机森林在有限数据集上分类神经信号方面表现出色。基于神经网络的算法也取得了显著成果,是未来研究的有力候选。然而,神经网络算法通常需要更多训练数据,这限制了其在小型数据集上的应用。相比之下,可解释算法如逻辑回归和SVM能更深入地揭示哪些特征具有足