摘要:脑电图(EEG)数据的多变量模式分析(MVPA)标志着探索大脑信息编码机制领域的一场革命性飞跃。该方法通过深入剖析个体层面时空特征间错综复杂的交互作用,有效突破了传统单变量技术难以捕捉的显著个体间及个体内神经变异性的局限。这一特性在针对临床人群的研究中显得尤为重要,因此,近年来,EEG数据的MVPA逐渐崭露头角,成为探究大脑疾病认知机制不可或缺的工具。本文旨在综述MVPA在多个认知维度——包括感知、注意力、记忆、意识等——内,如何为自闭症、注意缺陷多动障碍、精神分裂症、阅读障碍、神经系统疾病及神经退行性病变等神经活动异常模式的研究提供新颖而深刻的见解。这些研究不仅拓宽了我们对这些复杂疾病神经基础的理解,还揭示了MVPA在捕捉信息处理功能失调及补偿性神经认知动态方面的非凡敏感性,这是传统单变量分析方法所难以企及的。尽管MVPA的应用前景广阔,但其潜在的局限性亦不容忽视,需我们审慎对待并寻求解决方案。然而,正是其对个体神经认知特征的高度敏感性,为精准评估与个性化干预策略的制定开辟了前所未有的机遇,预示着未来神经科学与临床实践的深度融合与革新。
1. 使用脑电数据的MVPA解码认知
1.1 脑电图信号中神经表征的多维性质
深入理解人脑如何编码感官信息、构建外部世界的神经表征,并进而协调人类行为,始终是认知神经科学领域内数代学者孜孜不倦的追求。在这一探索征途中,神经影像技术已演化为解决这些核心问题的强大武器,它能够精准识别反映特定心理状态的神经活动模式,描述这些模式在空间中的起源,并揭示它们随时间推移的演变过程。其中,脑电图(EEG)作为神经影像技术的重要组成部分,其数据的多变量模式分析(MVPA)更是引领了研究大脑信息编码机制的新革命。通过捕捉并解析个体水平上时空特征之间复杂的相互作用,MVPA不仅克服了传统单变量技术的局限性,有效解释了显著的个体间和个体内神经变异性,还为深入研究临床人群大脑功能提供了前所未有的视角和深度。
神经电图活动的本质是多维度的,其复杂信号结构由不同但相互关联的时空特征构成。传统上,脑电图活动的分析主要依赖于单变量技术,这种方法基于假设驱动,侧重于对预定义时间窗口和头皮上特定电极的平均活动进行考察,并通过比较不同组或实验条件下的差异来进行分析。这种方法虽然旨在通过减少比较次数来提升统计分析的效力,但往往导致研究人员仅从单一电极和时间点出发,探索不同神经成分的相互作用,从而可能降低统计功效。此外,将脑电图数据的分析局限于特定的时空特征,可能会忽略掉在统计分析中因先验假设而被排除的相关神经信息。单变量方法的一个基本假设是,对于给定的时空ERP成分,所有个体在头皮上的分布应相似,然而,神经活动的实际展开方式却存在显著的个体间差异,这增加了混淆特定神经动力学的风险。因此,在个体水平上,这种方法的局限性尤为明显,可能无法全面捕捉和解释大脑活动的复杂性和多样性。
图1 示意图描绘了脑电图数据的单变量和多变量分析之间的方法和概念对比
随着我们对神经过程复杂性的认知日益深化,一个愈发清晰的需求浮现出来:我们需要更为先进的分析方法,以揭示信息如何在繁复多维的脑电图信号中被精妙地编码。
1.2 MVPA:从脑电图数据解码信息内容的神经表示
在这种背景下,结合机器学习技术与多元统计的脑电图数据多元模式分析(MVPA)已成为该领域的革新性手段,它采用数据驱动的方式,深入探索相关神经激活模式的奥秘。此方法能够捕捉到每个单独时间点上,从多个电极同步涌现的信息内容所特有的神经表征。MVPA解码技术超越了传统单变量分析的限制,通过考虑脑电图数据中多个时空变量之间的复杂关系,显著提升了分析灵敏度,使得我们能够以前所未有的精度解码那些未直接显现的神经表示信息。这种方法以时空聚焦的方式运作,有效捕捉并解析了大脑活动的动态变化。与单变量分析相比,后者往往通过简化手段,仅关注特定时间点或窗口内定义电极池中神经活动的平均值,从而忽略了EEG信号中蕴含的丰富多变信息。而MVPA则保留了EEG数据的完整性与复杂性,确保分析过程更加贴近大脑活动的真实面貌。因此,MVPA为我们提供了对信息处理背后神经动力学的更深刻、更全面的理解。它能够揭示那些复杂的神经模式及具有辨识度的时空特征,这些特征在单变量分析中可能因方法本身的局限性而被忽视。图1直观展示了这一差异,而关于单变量与MVPA方法之间差异的详尽讨论,可进一步参考Hebart和Baker等人的研究成果。
在操作层面,MVPA为脑电图数据分析提供了一种量化手段,用以揭示神经信号中个体信息内容的细节,并探究不同实验条件下信息处理的神经激活模式是否在神经层面上有所区别。具体而言,对于每位参与者,我们训练一个机器学习分类器(例如线性判别分析,LDA或支持向量机,SVM)来识别与数据子集中每个实验条件相对应的神经活动。然后,在独立的数据子集中测试这些训练好的分类器,以评估它们在区分基于神经活动模式的不同条件方面的成功率(即解码精度),从而允许我们比较每个时间点的解码精度,并映射神经信息处理的时间动态。与单变量分析通常关注于评估个体间效应的一致性而非试验间的一致性不同,MVPA针对每个个体独立进行计算,利用来自不同试验子集的神经活动数据平均值进行训练和测试。MVPA解码性能的高分类精度表明,与不同实验条件相关的信息能够被算法有效解码,并且由不同的神经活动模式所表征,这使我们能够识别出与信息处理个体差异相关的独特神经动力学特征。
1.3 经典单变量分析与 MVPA 之间的差异
MVPA与传统的单变量分析方法之间的一项关键差异在于,后者通常只关注表现出统一方向神经响应的数据,例如具有正或负幅度的ERP成分。然而,当神经响应包含不同符号时,单变量分析可能因平均神经活动的符号方向混合而导致信息处理模式的模糊性。相比之下,MVPA在识别信息处理模式上展现出更高的敏感性,即使在不均匀的神经响应迹象下也能有效,因为正面和负面反应都被视为有意义,共同贡献于识别与不同信息内容相关的神经活动模式。在MVPA中,由于多变量方法本质上不区分神经响应的方向(例如,正或负),效果的方向通常是不可见的。这一关键差异使得评估一种实验条件相对于另一种是否与更大或更小的神经激活相关变得复杂。通常,这样的目标并不在解码方法的范畴之内,其核心目标是区分与不同实验条件相关的神经活动模式之间的可区分性。然而,当效应方向的信息对研究具有重要意义时,可以通过多种策略来评估解码神经差异的方向。例如,可以通过将分类器权重转换为前向权重,并将这些权重投影回电极的地形图上,来表征潜在的神经活动,从而在每个时间点和电极上生成反映条件之间单变量差异的激活模式。这些模式可以直接解释为神经源的变化,从而评估不同实验条件之间的效应方向。此外,通过结合单变量和多变量方法,当存在统一的神经响应差异时,MVPA能够展现出比单变量分析更高的敏感性,因为它允许跨多个电极和时间点的数据实现最佳整合。
关键在于,这种解码技术能够揭示在不同实验条件下,信息的神经表征存在差异,即便是在中等水平的解码精度下也能做到这一点。实际上,当解码性能可靠地超越了随机概率水平,这就表明与特定条件相关的信息已被大脑编码,从而揭示了与不同实验条件相关的信息内容在神经层面上具有独特的表示。尽管解码性能的准确度通常可以体现效应的显著性,但它并不提供效应大小的标准化度量。相反,解码精度仅仅是对分类器预测神经活动信息内容能力的直接衡量。这种精度指标为我们提供了对大脑如何编码不同实验条件下信息内容的直观理解,但它并不量化这些差异的绝对或相对大小。
至关重要的是,神经活动的强度与可解码的信息内容是可以分离的,这意味着解码分类器所识别的差异可能在定性和定量上与单变量分析的结果不同。这种分离性有可能揭示出隐藏的神经动力学,这些动力学在传统单变量分析中很难被检测到。即便是在神经反应的激活与基线水平没有显著差异的情况下,解码技术也能识别出信息内容是否以及在何时开始在神经层面上有所表示,以及何时在不同条件之间表现出差异。通过评估分类器在每个时间点的准确性是否超过随机机会水平,我们可以识别出信息处理的时间序列和神经表征的延迟。例如,Cauchoix等人在2012年的开创性研究中指出,与单变量方法相比,时间分辨的MVPA能够更早地检测到与面部处理相关的神经反应差异,这在采用单变量技术时很难被发现,尤其是在中间视觉区域。这与单变量方法形成了鲜明对比,后者通常预先确定并单独评估脑电图信号的每个时空维度。虽然单变量方法可能通过特定时间窗口与神经处理的不同阶段相关联来提供信息(例如,ERP组件),但它们往往忽略了神经激活模式潜伏期的复杂性。MVPA的优势在于它能够捕捉并解析这些动态的、多维的神经活动模式,从而为理解大脑如何处理信息提供了更深入的视角。
相应地,与单变量技术相比,MVPA方法的优势不仅体现在能够探测每个时间点的分类准确性(即对角线解码),而且还包括进行交叉解码分析的能力。这种分析通过在不同但相关的数据集中训练和测试分类器的解码性能,从而允许研究人员检验特定的神经编码是否在不同的实验条件、群体和时间点中一致出现。在这个领域,交叉解码方法中的时间泛化技术提供了宝贵的见解。这种方法使研究者能够探究信息内容的神经表征如何随时间展开,并测试在特定时间窗口中识别出的神经活动模式是否在其他时间点上重现(即,表现出超过随机机会水平的交叉解码性能)。简而言之,时间泛化的交叉解码技术提供了一种手段,用以识别与处理中信息相关的神经表征的持久性和稳定性(图1)。
1.4 本次审查的范围
在过去的十年里,认知神经科学领域对脑电图数据的机器学习解码技术投入了极大的关注。大量研究已经揭示了神经动力学如何协调低级和高级认知机制,成功地解码了与视觉处理和分类相关的神经活动模式以及与听觉刺激、决策和工作记忆过程相关的神经活动。这些研究进一步阐明了感知和概念神经表征形成背后的精确时间动态,并最终提供了一个强有力的操作工具,以探索和验证认知理论。
脑电图数据的MVPA技术,传统上应用于健康人群的认知神经科学研究。然而,近年来,该领域经历了范式的转变,越来越多的证据表明,MVPA在解码隐匿的功能失调神经认知动力学和补偿神经机制方面,为多种临床条件提供了实用的操作工具。这些条件涵盖了精神和神经发育障碍、神经系统疾病、遗传疾病以及神经退行性疾病等广泛领域。
与经典单变量方法相比,这一初步经验证据突显了脑电图数据MVPA在识别异常神经动力学方面的更高敏感性。在本综述中,我们正式提出,同样的MVPA技术,能够表征健康个体的神经认知动态,也可以作为识别广泛临床人群中功能失调神经认知特征的有力工具,特别是针对神经发育、精神和神经系统疾病。
虽然先前的研究概述了脑电图数据MVPA在基础认知神经科学领域的应用,或其在临床环境中与其他神经影像学方法(如fMRI)的结合使用,但当前的综述是首个全面概述临床研究中基于信息的脑电图解码技术的最新进展。
具体而言,我们回顾了临床环境中使用脑电图数据MVPA的实验研究,旨在概述:i) 该方法在临床研究中的适用性;ii) 脑电图数据MVPA是否提供了超越传统方法的分析灵敏度;iii) 在临床研究中实施脑电图数据MVPA的注意事项和最佳实践。我们重点关注时间分辨MVPA研究,旨在解码神经发育障碍、精神病和神经系统疾病,以及跨不同认知领域(如感知、注意力、记忆、意识)的疾病。
综上所述,在这篇综述中,我们在介绍了MVPA相对于传统单变量方法的优势之后,对相关研究进行了全面回顾,强调了其在理解临床人群信息处理的神经动力学方面的相关性。最后,我们讨论了MVPA与脑电图的高时间分辨率相结合,如何在未来开辟新的研究领域,揭示能够表征广泛临床人群中个体神经认知特征的隐藏神经动力学。
2. EEG 数据 MVPA 在临床环境中的优点和实用性
传统上,在临床研究中,不同的机器学习方法已被应用于脑电图数据,尤其是在区分不同实验组(如临床患者与健康人群)成员资格方面,这些方法通常依据特定的脑电图特征(如原始电压或频率)。在这种应用中,解码器会处理所有参与者的数据,并接受训练以识别每个参与者的组别身份,目的是达到更高的解码准确性。例如,在自闭症谱系障碍(ASD)的研究中,这种方法提供了一种经济高效且简便的诊断工具,通过分析脑电图信号特征来对ASD进行分类,这可能有助于早期诊断并区分ASD与其他神经发育障碍及典型发育。
然而,尽管这种群体分类方法在开发诊断工具方面具有价值,但它未能深入揭示个体神经表征信息内容的差异。近年来,MVPA利用相同的机器学习分类算法,但以不同的目标概念,在临床神经科学领域获得了显著关注。实际上,MVPA能够提供一种有效的工具,揭示信息内容在其时间过程中的神经表征本质,并量化每个人神经信号中存在的信息。
关键的是,MVPA考虑到EEG信号多个时空特征之间的相互作用产生的复杂神经活动模式,允许从神经活动中提取有意义的信息,即使神经反应幅度较低。这是因为神经反应的幅度可以与从神经反应中解码的信息相独立(Emrich等人,2013)。因此,在临床环境中,MVPA具有特殊的相关性。根据最近的经验证据,我们认为MVPA对解码与信息处理相关的神经活动模式的特殊敏感性,可能使这种解码技术成为表征临床人群功能失调的神经动力学和特殊神经认知概况的最合适和最有前途的工具之一,它扩展并有时超越了经典单变量分析方法提供的潜力。
因此,基于多种令人信服的原因,EEG数据的MVPA对于解码临床人群神经活动的个体模式具有至关重要的意义(图2)。
图2 示意图描绘了临床条件下神经认知动力学研究中脑电图数据的单变量和多变量分析之间的方法和概念差异
单变量方法在理解功能失调的神经动力学方面的关键在于,它们旨在研究不同条件下脑电图电压(或频谱特征)的显著差异,通过评估诱发脑电图活动的基于平均的幅度和潜伏期——跨试验和个体层面——具有公认意义的预定时空特征(如ERP成分或光谱特征)。这种方法着重于跨试验和个体之间的平均反应,以揭示具有统计学意义的变化。
因此,单变量分析往往通过减少受试者间的变异性,促进个体间共性的识别,从而便于进行统计比较,以条件和群体为函数的诱发反应幅度。然而,这种方法可能存在一个风险,即它可能会掩盖个体层面上神经活动的特殊模式。
相反,MVPA采用了一种基于信息的数据驱动方法,它通过分析每个受试者内部来自训练和测试试验的不同子集的神经活动,在个体水平上进行计算,以评估参与者试验中神经活动的一致性。因此,MVPA的解码准确性对于特定受试者来说,代表了神经信号预测信息内容是否在该个体中被编码的能力。
这种方法考虑了每位受试者的独特神经活动模式,从而能够确定信息内容是否以及何时在神经层面上被单独编码,这有助于揭示不同类别刺激之间信息内容的神经表征差异。MVPA的这一核心特征在临床人群中具有特别的重要性,因为这些群体可能表现出特殊的神经活动模式,通常伴随着较高的个体间变异性和嘈杂的神经活动。
作为一种基于非理论的数据驱动方法,MVPA解码技术可能代表一种有价值的操作工具,能够评估临床条件下观察到的表型是否是由独特的神经动力学支持的独特神经通路的产物。
相应地,尽管单变量方法依赖于特定时空成分(如ERP)在个体中相对均匀的头皮分布和神经时序的假设,但脑电图数据的MVPA能够可靠地解码个体水平的神经活动模式。这种方法为精确解析神经编码的时空特征提供了统计手段,并揭示了每个人内部神经时序和头皮空间分布的独特性。这一点至关重要,因为临床疾病中处理速度的延迟或异常已被广泛证实,将分析局限于特定时间窗口可能会掩盖不同潜伏期下显著的神经模式。MVPA专门用于解码个体水平的神经信息,不易受到临床人群中较高个体间异质性的影响。因此,它能够识别潜在的独特、补偿性或残余的神经认知机制,这些机制可能是由大脑结构和功能的异常所建立,并与神经典型个体中可测量的神经动力学相比,可能导致原生神经动力学的改变。
尽管单变量分析和MVPA在理解神经动力学如何编排信息处理方面,通过解决不同的实验问题(即基于单变量激活与基于多变量信息)可能在概念上被视为互补的方法;然而,越来越多的共识认为,与传统单变量方法相比,MVPA在表征信息内容的神经编码方面具有更高的敏感性。这一观点得到了最新分析技术的支持。接下来的部分将详细回顾利用脑电图数据的MVPA来解码临床人群中的神经认知功能障碍或神经编码异常的研究,并在可行的情况下,直接将MVPA的结果与单变量分析的结果进行对比。
3. 解码神经发育和精神病人群的认知:最先进的经验证据
3.1 解码精神分裂症的认知
Bae等人的研究是首批尝试之一,利用高分辨率脑电图数据通过MVPA解码临床人群信息处理功能失调的神经模式。他们的研究目的是探究这种解码技术是否能够可靠地应用于比较精神病人群中信息处理的神经动力学。他们重新分析了之前使用单变量ERP分析检查的脑电图数据集,该数据集显示精神分裂症(SCZ)患者在视觉工作记忆任务的延迟期间表现出增强的后对侧延迟活动(CDA)相比于健康控制(HC)参与者。Bae等人提出了一种基于信息的脑电图数据MVPA技术,能够量化每个个体大脑编码信息内容的情况及其时间点。然而,考虑到SCZ患者的神经信号——以及更广泛的临床队列——可能由于与神经过程变异性相关的更大噪声而具有更高的可变性,这可能与SCZ个体解码精度较低有关,从而为该技术在临床人群中的应用提出了一个关键挑战。他们对通常用于测量CDA的时间窗口内的脑电图数据进行了MVPA,解码了所有电极上由单个对象与多个对象记忆保存所引起的神经反应,探讨了这种解码技术是否能够揭示组间和组内的信息差异,而这些差异在单变量ERP分析中未被检测到。为了确保组间解码性能的差异不是由噪声引起的,Bae等人比较了SCZ与HC组之间的解码性能,同时仔细考虑了每个个体与任务相关的神经信号的强度、神经噪声的程度和信噪比。首先,他们的结果显示,与HC受试者相比,SCZ组表现出更高的解码准确性,这与之前的单变量结果一致,其中SCZ个体显示出更高的CDA。重要的是,解码性能是通过任务相关神经信号的比率、其在试验中的变异性以及神经噪声来预测的。单变量分析的结果仅能推断SCZ组相对于HC组分配了更多的神经活动,而MVPA解码结果则表明SCZ中的神经信号包含了更多与任务相关的信息。这一发现为脑电图数据的MVPA可以可靠地应用于比较精神病学和非精神病学人群的神经动力学提供了概念证明,并强调了在比较不同群体时考虑噪声差异的重要性。
在最近的一项由Li等人开展的研究中,科学家们深入探索了精神分裂症(SCZ)患者视觉工作记忆与注意力缺陷背后的神经动力学失调机制。该研究沿袭了Bae等人的研究路径,采用视觉工作记忆范式,并同步记录了SCZ患者与健康对照(HC)受试者的脑电图活动。通过单变量分析,研究揭示了SCZ患者的N2-后-对侧和CDA成分振幅显著低于HC参与者。进一步地,研究团队采用了基于信息的多变量模式分析(MVPA)方法,验证了单变量分析的结果,并发现尽管SCZ与HC两组在一段时间内均表现出显著的记忆负载解码能力,但SCZ组在N2pc和CDA成分上的解码表现相较于HC组有所减弱。这一发现与先前一些MVPA研究的结果形成了对比,其中Bae等人的研究指出,SCZ患者的CDA时间窗内神经活动能被更准确地解码。基于此,Li等人推测,这些差异可能源于实验范式设计的不同。从更深层次分析,这种差异或许与本研究未充分考虑每位参与者的神经噪声水平有关,因为SCZ患者通常伴随着较高的神经信号噪声,这可能导致其解码精度降低。尤为引人注目的是,在SCZ患者中,记忆负载的解码准确性与其行为表现之间呈现出显著的正相关关系,这一现象在单变量结果中并未显现,表明较高的解码准确性可能预示着更好的行为表现。综上所述,Li等人的研究强有力地证明了脑电图数据的MVPA分析在揭示SCZ患者个体水平神经活动功能障碍模式方面的独特优势,而这些模式在传统的单变量事件相关电位(ERP)分析中往往难以被察觉。
3.2 解码神经发育障碍(自闭症、多动症和威廉姆斯综合症)中的认知
为了探究基于个性化信息的MVPA方法是否适用于神经发育状况,同一研究团队在学龄期注意力缺陷多动障碍(ADHD)儿童中应用了脑电图解码技术。该研究旨在识别这些儿童视觉注意定向缺陷的神经相关性。具体来说,研究团队对经典视觉弹出搜索范式下的枕顶脑电图活动进行了MVPA分析,目的是解码目标定位,并探究不准确的空间位置编码与不良行为结果之间的潜在联系。研究者指出,传统的单变量方法可能无法实现这些目标,因为N2pc与侧化注意过程的关系复杂,目前尚不清楚它是否真正传递了关于目标空间位置的精确信息,或者仅仅是注意力转移的标志。相反,脑电图数据的MVPA提供了一种可靠的方法来解码反映目标位置空间定位编码的神经表示,正如之前在健康个体中所证实的那样。在ADHD中,异常的空间编码可能与较高的神经噪声有关,这可能导致解码精度降低。研究者假设,ADHD患者解码准确性较低所反映的神经噪声增加可能与视觉皮层中的混乱神经活动有关,这反过来可能影响视觉空间注意力定位的精度。根据这些假设,他们首先发现ADHD患者的后头皮区域与对照组相比产生了较小的N2pc成分。接着,他们应用时间分辨MVPA分析来进一步探讨目标位置信息何时以及是否被解码。结果显示,对照组和ADHD组在视觉搜索开始后,解码准确度均超过了随机水平,但ADHD组表现出较低的解码准确度和延迟的解码峰值,表明ADHD儿童的目标定位更不准确且更慢。重要的是,行为结果、单变量和多变量神经测量之间的相关分析揭示了对照组中N2pc幅度和解码准确性之间存在显著相关性,而在ADHD儿童中则不然。在ADHD儿童中,解码准确性与行为反应时间(RTs)之间存在负相关。这表明ADHD个体编码的目标表征具有与N2pc活动无关的独特特征,表现出不同的神经潜伏期。最后,发现个体水平的解码准确性与RT标准差之间存在负相关,这表明ADHD儿童的解码准确性水平较低,预示着行为结果的个体内部变异性较高。总体而言,这些结果再次凸显了MVPA在临床环境中的重要性,尤其是在个体表现出非典型的神经活动模式和神经处理时间的情况下,这些模式通常是不可预测的,并且与健康个体表现出的神经动态不同。
在最近的一项研究中,我们采用基于信息的解码方法,对自闭症谱系障碍(ASD)个体的样本进行了MVPA解码,旨在表征其视觉注意力非典型性背后的功能失调神经模式。我们直接比较了单变量和多变量脑电图分析的结果。ASD患者视觉信息的非典型编码已有广泛记录,尤其是在他们异常的高度集中注意力和注意力资源重新分配的不灵活性方面。
在我们的研究中,我们假设这种特殊的视觉信息处理方式可能与非典型延长的神经反应和神经水平上视觉信息的过度表达有关。为了验证这些假设,我们在视觉空间注意力任务期间记录了年龄匹配的ASD儿童和对照组(通常是发育中的儿童)的脑电图,任务中不同偏心率的目标出现前会有一个大或小的圆形视觉提示(即中央或外围)。
我们利用脑电图数据的MVPA来揭示ASD儿童是否表现出长期的视觉信息神经表征,从而比较ASD和对照组在注意力焦点调节过程中引发的神经模式(大线索与小线索试验;线索锁定分析)以及目标位置的函数(目标锁定分析)。我们采用了两种分析方法:一是基于“经典”信息的对角解码,其中分类器在同一时间点进行训练和测试;二是时间泛化分析,使用跨时间交叉分类,这种方法有助于追踪神经动力学随时间变化的稳定性,并能够识别信息内容神经表征的持续时间。
“经典”MVPA线索锁定分析显示,ASD组和对照组对线索(大与小)的持续显著解码,尽管ASD组显示出更早的解码和更高的准确性。当对相邻电极的不同簇分别进行相同的分析时,我们发现,在对照组中,与视觉提示相关的神经编码在多个头皮区域的目标出现时即终止,而在ASD组中,即使在目标发生后,不同的头皮区域仍存在显著的解码,表明视觉信息的处理在空间上更广泛,在时间上更长,这一发现也得到了线索相关神经反应时间泛化分析的证实。
此外,在ASD组和对照组中,目标偏心率的整体显著解码都很明显,但在小提示条件下(放大条件),ASD儿童相对于对照组表现出早发和延迟的解码峰值,支持先前的行为证据,表明视觉注意力的脱离速度较慢且过度集中。
最后,我们发现,目标出现后,提示相关视觉信息的更高神经编码仅在ASD儿童的行为水平上预测较慢的反应时间(RT),从而表明过度的自动视觉注意捕获,可能与神经水平上视觉信息的延长编码有关。我们还对组间平均振幅差异进行了单变量分析,比较了不同头皮区域P1和N1 ERP的强度和峰值潜伏期。此类分析未显示ASD组和对照组之间的显著差异,这强调了脑电图数据的MVPA在揭示隐藏的神经动力学方面可能更为敏感,而传统的单变量分析技术可能在识别编码何时进行以及信息内容随时间变化方面不够敏感。
3.3 解码神经系统疾病中的认知改变
越来越多的实证研究在这个领域表明,MVPA的应用不仅仅是一种研究方法的选择,而是在识别单变量技术无法捕捉的个体神经反应方面至关重要。例如,在神经系统疾病中,大脑功能结构的重组是常见的,这导致了信息处理基础的神经动力学在个体之间存在显著差异。因此,识别每个个体内部独特的神经活动模式,以预测其神经心理学特征,变得尤为必要。正如以下各节概述所提出,单变量分析方法在完成这一任务上存在挑战,而MVPA的实施则能够成功克服这些难题。
3.3.1 神经退行性疾病
在神经退行性疾病的研究领域,已有明确的经验证据表明,MVPA技术已被证实能够提供有价值的临床见解,并有可能作为早期神经退行性疾病的生物标志物,用于检测轻度认知障碍(MCI)个体的异常神经认知动态。Karimi等人的研究利用脑电图数据的MVPA来描绘MCI患者与对照组在信息处理方面的差异。研究者强调,为了深入理解,需要超越仅能反映神经反应激活水平的单变量分析,而MVPA的应用旨在解码反映每位患者信息内容的神经活动模式。Karimi等人的研究通过这种解码技术发现,与对照组相比,MCI患者在信息处理的神经速度上有所下降,这一发现突出了信息内容神经编码的延迟。相反,在MVPA能够显著区分不同组别的时间窗口内,单变量ERP方法并未显示出对照组与MCI组之间存在显著差异。与ERP单变量结果相比,MVPA揭示的组间差异在多个头皮区域中均清晰可见,并且这种差异随时间表现出一致性,同时在预测行为结果方面也显示出其效用,从而更准确地阐明了个体信息处理的神经认知概况。
在另一项由Zhen等人开展的研究中,科学家们深入探索了遗忘性轻度认知障碍(aMCI)患者视觉与动觉意象的神经相关性,采用多变量模式分析(MVPA)这一数据驱动的方法,对脑电图中的神经动力学进行了细致剖析。鉴于aMCI患者神经反应时空特性所展现出的高度个体间变异性,Zhen等人强调了在此情境下,分析大规模神经信号活动模式时保持每个神经信号独特性的重要性。为了确保基于MVPA信息的方法与基于单变量激活的方法之间具有高度可比性,研究团队采用了数据驱动的大规模单变量分析技术,这一方法能够在神经处理的整个时间窗口内精准识别不同条件和组别之间的差异。研究结果显示,虽然单变量方法主要聚焦于视觉意象条件下组间差异的显著性,但MVPA则进一步揭示了aMCI患者在视觉与动觉意象处理上的双重异常,这表明两者在信息内容的神经表征上均存在不足,具体表现为较低的解码精度。尤为有趣的是,MVPA分析还指出,两组间对于成功解码贡献最大的电极在空间分布上存在显著差异,这揭示了aMCI患者与对照组在动觉与视觉意象信息处理的神经层面上展现出不同的表现模式。此外,解码分析进一步表明,无论是aMCI组还是对照组,解码器在区分动觉与视觉神经处理时的能力并非依赖于头皮上的特定电极组,而是归因于跨地形空间多个电极相互作用所形成的复杂神经活动模式。这一发现凸显了MVPA在捕捉全局神经活动模式方面的独特优势,这些模式在单变量方法中往往难以被探测到。
综上所述,这些研究成果不仅展示了MVPA在揭示信息处理神经模式方面的强大能力,更为我们理解神经退行性疾病中信息处理的异常神经动力学提供了宝贵的见解,为未来的研究开辟了新的方向。
3.3.2 获得性脑损伤
MVPA技术在研究中风后获得性脑损伤的领域中,同样能够提供宝贵的洞察,因为大脑在这种状况下通常会重新组织其功能结构。例如,Lasaponara等人通过对脑电图神经反应进行多变量解码分析,来追踪右侧脑损伤患者是否存在左空间忽视(N+)或无忽视(N-)的个体情况,以及他们左右内源性注意力定向的差异。忽视综合征的症状特征在个体之间表现出显著的差异。因此,单变量方法在群体水平上对脑电图信号的预定时空成分进行平均,可能无法在个体患者水平上有效地提供可靠的注意力定向特征表征。因此,Lasaponara等人采用了MVPA的一种变体,分析了在中心线索引导下向左和向右定向注意力期间的地形神经反应,并比较了N+、N-患者和对照组参与者。在个体层面上,MVPA成功地解码了右侧脑损伤患者和对照组参与者在左右注意力定向相关的脑电图信号。特别是,与N-患者和对照组相比,在N+患者中,显著的个体分类主要在提示出现后的较晚时间窗口观察到,这反映了信息处理的改变和延迟,而在稍后的时间窗口中并未观察到注意力资源的自愿参与。这些结果突出了解码方法的重要性,它能够研究个体层面的注意力机制并精确地刻画其微妙的时间动态。
在最近的一项研究中,Niessen等人利用脑电图数据的MVPA技术,探讨了左侧大脑半球(LH)中风患者表现监测和错误检测缺陷的神经动力学,这些患者的中风影响了左脑的大脑中动脉区域,并伴有认知缺陷(如失语症和失用症)以及执行功能障碍。除了采用单变量ERP分析来研究刺激处理相关的神经活动(即N2和P3成分)和错误相关信息外,他们还实施了MVPA来追踪是否可以从全脑活动模式中解码出错误反应与正确信息,从而识别出与错误处理相关的独立指标。令人惊讶的是,尽管与对照组相比,患者的刺激相关ERP成分表现出异常,但ERN活性并未显示出组间差异,这表明刺激处理的早期缺陷在随后的反应相关ERP成分中得到了成功的补偿。此外,MVPA分析证实了与错误相关的神经处理在两组之间没有差异,因为与正确和错误反应相关的神经活动中所包含的信息在两组中都能够以高于随机水平的准确度进行解码。这些发现支持了MVPA分析的价值,它不仅揭示了损伤后的认知功能保留情况,而且还提供了对神经活动模式的深入理解。
3.3.3 解码神经系统条件下感觉信息的神经处理
脑电图数据的时间分辨 MVPA在临床环境中的应用已被证明不仅对于解码认知的高级方面具有价值,而且还是检查低级感觉系统和感知过程完整性的有效工具。
Tzovara及其同事通过一系列研究提供了明确的经验证据,证明了MVPA在解码与听觉信息处理相关的神经活动模式方面的能力,即使在昏迷患者缺乏明确认知测量的情况下,也优于单变量方法。在他们的开创性研究中,Tzovara等人分析了30名缺氧性昏迷患者的脑电图神经反应,这些患者接受了标准声音和异常声音(即不匹配听觉范式)的刺激,并与对照组进行了比较。他们在单个患者水平上,在昏迷后24小时内以及发病后一天,两个不同时间点实施了MVPA。首先,他们的结果显示,所有对照组受试者和所有昏迷患者在区分声音方面的解码准确性都极高,表明即使在昏迷状态下,患者也保留了一定的听觉信息神经表征。与此同时,他们对额中央电极的听觉诱发电位(AEP)进行了单变量分析。然而,由于患者间的个体差异较大,以及单变量方法中应用的时空限制(即预定的时间窗口和分析的电极池),这种分析仅在第一天的23名患者和第二天的20名患者中显示了一致的AEP脑电图记录。因此,这些发现强调了MVPA在捕捉反映听觉感觉处理的神经活动全局模式方面的敏感性,这是标准单变量方法无法检测到的。有趣的是,第一天和第二天之间解码准确性的提高也预示了患者在三个月时的生存和觉醒机会,具有100%的阳性预测值。相反,AEP的单变量分析并未为个体患者的临床预后提供丰富信息,最终凸显了MVPA在提供个体层面重要见解方面的价值。基于他们的初步发现,MVPA的结果在一大群昏迷个体中成功复制,并且对更复杂的听觉和触觉刺激的反应也进行了成功的分析。
Defina等人在这一领域做出了引人注目的贡献,他们强调了脑电图数据的MVPA如何被证实是一种宝贵的工具,用于探究慢性复杂区域疼痛综合征(CRPS)患者触觉感知功能失调的神经动力学。研究者们考察了CRPS患者与对照组在触摸受影响和未受影响的身体部位时神经反应的可能差异。先前在健康人群中的研究表明,MVPA在解码与疼痛感知相关的神经模式方面具有有效性,作者们利用这种技术来解码CRPS参与者的神经活动,以提取与疼痛体验相关的个体模式。通过将解码技术与计算模型巧妙结合(Defina等人,2021年),他们发现与对照组相比,CRPS患者在触摸身体受影响一侧时的解码准确性普遍较低,相关的神经编码显示出随着时间的推移而延迟和持续的特点,正如对角解码和时间泛化分析所分别强调的。在讨论他们的结果时,Defina等人强调了使用脑电图解码技术的重要性,这种技术能够识别与感知和感觉过程个体差异相关的神经信息处理的个体模式,从而提供了一个有用的工具,以更好地识别和治疗CRPS,最终获取个体的神经认知概况。
总的来说,在获得性神经心理条件下,信息解码技术有助于描绘信息处理的残余活动以及潜在的补偿机制,阐明由于功能和结构异常可能在这些群体中出现的独特空间定位和时间模式。
4. MVPA 在临床环境中的注意事项
尽管脑电图数据的多变量模式分析(MVPA)在揭示神经机制方面展现出广阔的前景,但其在实际应用于临床人群时仍面临一系列方法上的挑战,这些挑战不容忽视。临床患者通常伴随着更为嘈杂的神经信号和高度变异的神经过程,这些特征可能导致神经信号的“混乱”和反应模式的不稳定,进而掩盖了潜在的生理神经活动。这种变异性和噪声最终可能削弱MVPA的解码性能,降低其在不同条件下预测神经活动差异的准确性,因为MVPA的准确性高度依赖于试验间效果的一致性。然而,尽管存在这些潜在的局限,MVPA在表征具有高水平神经噪声的临床人群的神经认知特征方面仍展现出了独特的价值。从神经发育障碍到精神疾病再到后天神经心理状况,越来越多的证据表明,EEG数据的MVPA是一种可靠且富有洞察力的技术,能够捕捉临床人群大脑编码信息内容时的高个体内和个体间神经变异性。例如,在注意力缺陷多动障碍(ADHD)患者中,高神经噪声与较低的信息内容神经表征解码准确性相关联,这进一步预测了异常的行为表现。而在精神分裂症(SCZ)的视觉工作记忆研究中,虽然不同研究关于SCZ患者解码准确性的方向性(即增加或降低)存在争议,但均强调了细致处理信号中神经噪声的重要性。类似地,在自闭症谱系障碍和威廉姆斯综合症中,MVPA也展现出了更高的解码准确性,能够预测个体水平的异常行为结果。这些混合模式的研究结果表明,解码精度水平在很大程度上反映了MVPA区分神经网络处理不同信息内容差异的能力。因此,尽管面临挑战,但MVPA在揭示临床人群神经动力学异常方面仍具有不可估量的价值,为深入理解这些复杂疾病提供了新的视角和工具。
为了缓解噪声问题,研究者们提出了多种策略。一种行之有效的方法是采用稳健的交叉验证技术,以确保个体解码结果的可靠性。这种方法通过在分割的数据子集上训练和测试解码分类器,有助于减少神经噪声的影响,并确保模型的性能不是依赖于特定数据集(可能包含噪声)的结果。这样做降低了过度拟合噪声数据的风险,并确保了模型的性能准确反映了其超越训练数据集的泛化能力。此外,信噪比(SNR)可以作为统计模型中的一个协变量,用以控制噪声的影响,确保解码性能的差异不仅仅是由神经噪声水平的变化所引起。通过计算SNR,可以量化每个个体数据中的噪声程度。这个过程允许比较不同组别之间的SNR(例如,临床组与对照组),以识别和解释可能影响解码结果的数据质量差异。例如,在精神分裂症(SCZ)背景下的EEG-MVPA研究中发现,解码性能可以通过SNR单独预测,这一发现强调了在临床研究中仔细考量个体和群体之间噪声差异的重要性。
此外,解码过程中的起始与峰值延迟往往受到神经噪声的显著扭曲,这在临床环境中尤为关键,因为此类环境中的神经噪声通常较为显著。为了准确表征时间动态并在EEG解码中测试统计显著性,一种可靠的方法是将起始潜伏期定义为信号分量达到其最大幅度50%的时刻。这种方法有助于减少神经噪声对时间动态解析度的影响。当研究目标转向比较不同组(如ASD患者与对照组)在特定实验条件下的神经活动时,应用MVPA方法会面临额外的复杂性。这是因为MVPA的核心在于区分与不同信息内容相关联的独特神经模式,进而在不同组之间进行比较,正如本综述所阐述的。尽管已有多种策略被提出以克服MVPA的局限性,我们建议在临床环境中采用单变量分析与MVPA相结合的综合方法。这种综合策略的优势在于其灵活性,能够根据研究者的具体需求进行调整。单变量分析能够深入揭示群体及个体间的神经处理差异,侧重于激活状态的直接测量;而MVPA则侧重于从信息内容的角度解析神经模式,为理解神经系统的全局运作提供独特视角。通过结合这两种方法,研究者可以更加全面地解答关于神经处理差异的不同研究问题,实现从局部到整体的全面洞察。
5. 一般性讨论和未来展望
本综述中考察的实证研究揭示的见解强调了应用于脑电图数据的MVPA方法在探索与神经发育、神经精神及神经心理学不同群体相关的信息处理功能失调和补偿神经模式方面的独特潜力。正如上述研究所示,基于脑电图信息的解码方法能够为临床人群中的个体神经认知特征提供新的、有价值的洞察,更好地解释个体间的高度异质性,同时保留每个参与者的独特性。与基于平均值的单变量分析(如ERP)相比,数据驱动的MVPA方法考虑了神经活动的整体模式,而单变量分析往往忽视了临床人群中神经活动的实质性个体间差异。这些差异是由多个时间点和电极之间复杂的相互作用在每个个体中产生的。在以神经活动模式显著差异为特征的临床条件下,这种解码方法尤为重要,因为它有助于揭示功能失调的神经动力学和信息处理的补偿机制。传统的单变量分析,通常针对脑电图信号的预先确定的时空成分,往往由理论驱动的框架主导,存在忽略临床个体中功能失调模式和替代神经动力学的风险。相反,MVPA具有有效捕捉个体神经活动模式的潜力,无需预先选择时空脑电图成分,为研究个体神经认知特征开辟了新途径。重要的是,与在群体层面进行统计分析的传统单变量技术不同,脑电图解码是针对每个个体单独进行的,为理解大脑如何独立编码信息内容提供了关键工具。这一特性有望优化不同临床队列的个性化评估和干预。
尽管如此,正如前文所述,我们希望强调在临床背景下,脑电图数据的MVPA应用并不排除传统单变量方法的并行使用。相反,它丰富了分析手段,提供了有价值的补充信息,例如深入理解不同实验条件下神经激活差异的幅度和方向。实际上,信息内容也内嵌于单变量脑电图信号中,尽管在效应轨迹不明确时,传统单变量方法可能难以辨别组间的实验差异我们提倡采用一种综合方法,将传统的单变量分析与MVPA相结合,以提升检测个体间和个体内部差异的灵敏度。
本综述中一个有趣的发现涉及识别典型与临床群体间信息神经表征的解码准确性差异。尽管临床疾病个体的解码准确性较低或中等可能归因于其较高的神经噪声,有趣的是,一些研究表明,与非典型神经个体相比,对照组通常表现出更高水平的准确性。例如,近期研究显示,与典型群体相比,ASD个体总体上显示出更高的解码准确性。这一发现与直觉相悖,因为临床人群通常具有更高的神经噪声和较大的神经信号变异性,预计这将导致较低的解码精度。最近有假设提出,解码性能的准确性也可能表明神经活动中信息内容的更大表征以及刺激编码期间部署的神经认知资源的程度。尽管目前对解码准确度水平预测神经认知资源分配程度的功能解释仍属推测,但我们鼓励科学界通过在临床研究中实施脑电图解码技术来实证研究这些假设。
此外,本综述中的研究表明,解码性能的多个方面为表征临床人群的神经认知概况提供了信息。正如最近的临床研究所采纳的那样,我们建议在个人和群体层面上进行索引测量,以突出解码性能的准确性和时间(即解码延迟)。这种方法可以识别与信息内容何时开始在神经活动中被解码(解码开始)、信息的神经编码持续多长时间(解码的可持续性)、平均准确度水平和解码性能的延迟峰值(解码精度和峰值解码延迟)相关的信息。此外,结合时间泛化分析(即在不同时间点进行训练和测试)与对角解码技术(即在同一时间点进行训练和测试),可用于识别通常表现出异常的临床状况的个体的信息处理顺序阶段,提供有关神经表征寿命的有价值信息。
在当前的综述中,我们专注于脑电图数据时域内采用这种解码技术的证据。然而,这种方法也可以通过解决EEG信号的其他诱发和自发测量(例如频率和时频特征)来解码神经活动中包含的信息。例如,MVPA最近被用来确定EEG信号的原始幅度和频率特征是否反映了视觉注意选择的不同方面,揭示了α波段的振荡活动可能与隐性注意力的方向更相关,而原始幅度可能与低级感知过程相关。在此背景下,正如临床领域的最新证据所表明的那样,未来的研究最好通过使用不同的脑电图测量来解码信息内容,以获得更全面的信息了解个人的神经认知概况。最后,一个值得注意的方面是,尽管理解MVPA应用于脑电图数据的方法原理很重要,但当代工具并不需要高级编程能力。值得注意的是,基于Matlab的工具箱,如CoSMoMVPA 、ADAM 以及最新版本的ERPLAB,只需要适度的编程知识,从而能够通过用户友好的界面实现本综述中描述的大多数分析。我们预见,脑电图数据的MVPA将成为识别各种神经发育、神经精神和神经心理疾病中神经活动功能失调和补偿模式的宝贵工具,因为它具有识别异常认知结构的生物标志物和定制治疗的潜力,根据个人独特的神经特征。
参考文献:Decoding cognition in neurodevelopmental, psychiatric and neurological conditions with multivariate pattern analysis of EEG data.