Nature Communications:人类皮层的微结构不对称性

1. 摘要

人类大脑皮层表现出半球间不对称,但这种不对称的微观结构基础仍未完全了解。在这里,我们使用一个死后男性大脑来探测特定层的微观结构不对称。总体而言,前部和后部区域分别表现出向左和向右的不对称,但这种模式在各个皮质层之间有所不同。使用活体人类连接组计划 (N = 1101) 的T1w/T2w 微观结构数据观察到了类似的前后模式,其中平均皮质不对称与死后第三层的不对称 最为相似。此外,发现微观结构不对称是可遗传的,随年龄和性别而变化,并且与内在的功能不对称相对应。我们还观察到语言和心理健康与个体层面的微观结构不对称模式之间的差异关联,说明上下微观结构轴和前后微观结构轴之间的功能差异,可能与发育过程有关。最后,我们可以提供与其他活体微结构测量方法一致的证据:磁化转移(N = 286)和定量 T1(N = 50)。总之,我们的研究突出了人类皮层中的微结构不对称及其功能和行为的相关性。

2. 引言

半球偏侧化是大脑组织的一个重要特点,以支持人类的认知功能,包括语言和注意力。先前的研究表明,在宏观尺度上,左、右半球存在神经解剖学差异。具体来说,皮质厚度呈现不对称模式,从前部(向左不对称)延伸到后部(向右不对称)区域。正如Sha等人所指出的,大脑左右半球之间的这些结构差异可能有潜在的遗传因素。虽然宏观结构不对称已被广泛研究,但皮质区域的细胞结构和骨髓结构等潜在的微观和介观结构标记主要是在区域水平的分析下进行的。

新皮质由 6 层组成,每层包含大小和密度各异的神经元。这些层从软脑膜排列到灰白质边界,包括:第 I 层,富含顶端树突和轴突末端;第 II 层和第 III 层,富含锥体细胞;第 IV 层,神经元密集;第 V 层,包含小(5a)或大(5b)锥体神经元;第 VI 层,包含皮质丘脑锥体细胞。值得注意的是,层状和细胞构造特征在定性研究中至关重要,但在整个皮质中各不相同。例如,虽然感觉区域表现出良好的层状结构和高细胞密度,但包括语言网络在内的关联区域则显示出降低的细胞密度和不太明显的层状结构。有少数研究侧重于语言区域和杏仁核的微结构不对称性。例如,语言区域(BA 区域 44 和 45)的微结构强度在左半球较高,并且通过细胞结构映射测量杏仁核亚核体积的左右差异。尽管皮质细胞结构不对称的证据有限,但了解这一现象对于增进我们对大脑功能的认识至关重要。

虽然尸检数据可以提供皮质微观结构及其在微观尺度上的潜在不对称性的新见解,但它不能直接与个体差异和潜在的功能相关性联系起来。定量磁共振成像(MRI)的最新进展使得能够基于成像标记(例如 T1w/T2w、定量 T1(qT1)弛豫测量和磁化转移(MT))获得详细的区域活体微观结构信息。活体定量MRI可捕捉到感觉区域中的较高强度和跨模式异常和无颗粒皮质区域中的较低强度。感觉区域和跨模式区域之间的这种区分也存在于内在功能组织中,表明大脑组织的微观结构和功能存在共同的原则。这一原则与结构模型相一致,认为具有相似微观结构的区域可能在功能上相互连接。事实上,各种研究已经证明了内在功能沿此感觉-跨模态轴的不对称性。

先前的研究表明,皮质厚度和表面积等宏观结构标志物的整个皮质范围存在不对称模式,且皮质微观结构的区域性报告存在不对称,受此启发,我们旨在研究整个皮质的微观结构不对称。具体来说,我们使用基于高分辨率组织学和成像数据的多尺度方法探究了皮质不对称的微观结构基础。鉴于宏观结构不对称研究报告了额叶区域存在向左不对称,枕叶区域存在向右不对称,我们希望研究这些宏观结构模式的潜在微观结构相关性是什么。首先,我们研究了 BigBrain,这是一份65 岁男性的超高分辨率全脑死后组织学图谱。它可以在单个层级上量化皮质细胞结构的不对称性。其次,我们研究了活体微观结构不对称性,以评估个体间变异。对于活体微观结构图,我们使用了来自人类连接组计划 (HCP) 的 1101 个年轻成人个体脑影像的 T1w/T2w 比率。此外,我们旨在探究其功能相关性,其动机是结构模型,指出微观结构相似性与连接性有关,以及先前关于不对称功能标记的研究。结构性脑不对称与行为差异有关,如语言技能的变化和心理健康,如自闭症、注意力缺陷多动障碍、精神分裂症和物质依赖障碍。最后,基于健康HCP样本,我们研究了微观结构不对称与语言技能个体差异之间的关联,以及其与心理健康特征的潜在相关性,包括抑郁、焦虑、躯体化、回避、多动症和反社会表型。鉴于已经提出了不同的成像序列来测量活体微观结构,如上所述,我们利用这些方法来验证我们的结果,包括从数据集 ( N  =50) 用于在年轻人中进行微结构信息连接组学 (MIC) 的数据,以及从作为精神病学神经科学网络 (NSPN) 的一部分获得的青少年和年轻人纵向队列 ( N = 286) 的 MT 图。

3. 结果

3.1 超高分辨率尸检样本反应了皮层微结构不对称性的分化模式

我们首先使用基于 BigBrain的超高分辨率尸检数据绘制皮质细胞结构不对称图。对 BigBrain 的切片(20 µm)进行细胞体染色、扫描和 3D 重建,得到超高分辨率图谱(100 µm 3)(图 1a)。以BigBrain 的皮质细胞染色强度为特征,通过卷积神经网络算法对整个大脑皮层进行六层皮质分割(60 个表面)。利用多模态和 Cole-Anticevic (CA) 分区将地图下采样为 360 个区域和 12 个网络。CA 网络包括初级视觉(Vis1)、次级视觉 (Vis2)、躯体运动 (SMN)、扣带回-岛叶 (CON)、背侧注意 (DAN)、语言 (LAN)、额顶叶 (FPN)、听觉网络 (AUD)、默认模式 (DMN)、后多模态 (PMN)、腹侧多模态 (VMN) 和眶额情感 (OAN)。为了防止测量偏差,分别对左半球和右半球的层剖面平均强度进行回归(图 1b)。

图1c显示了平均残差强度图。左右不对称指数 (AI) 是通过从左半球减去右半球计算得出的。整体平均图(跨层平均)显示从前到后的左右AI(图 1d),表明与右半球相比,左半球前部区域的细胞染色强度较高,但后部区域的强度较低。在网络级别,右侧锚点(最右侧区域)位于 AUD,左侧锚点位于 LAN。LAN 在浅层也表现出强烈的左侧不对称,但从 III 层开始变为右侧不对称,在 IV 层和 VI 层达到峰值(图1e)。对于整个皮质,浅层表现出前后不对称,深层表现出上下不对称。为了总结六层(60 个表面)上更向左或向右的不对称现象,我们计算了 AI 的偏度(图1f)。总体而言,偏度表示强度随皮质深度变化的差异。较高的偏度表示深层表面相对于浅层表面具有较高的强度,而较低的偏度表示上层和下层之间的差异较小。左右偏度高不对称表示强度分布在左侧相对较深的表面上更偏斜。左右不对称的偏度告诉我们不对称在偏度得分高的层中的分布,表明左右不对称在较深的皮质层上发生变化。在躯体运动网络中观察到向左更不对称,而听觉网络中观察到向右更不对称之间的偏度差异。

图片

图1. a, BigBrain的 3D组织学重建和六层皮层的估计值。b, 皮质内染色强度曲线。红线和蓝线分别表示左半球和右半球。c, 6层皮层的平均强度图。d,各层间的平均不对称性。红色和蓝色表示不对称指数 (AI) 左 > 右和右> 左。e, Bigbrain的分层AI:六层逐块 AI 脑图和网络热图。f, 沿皮质内深度 60 个点的不对称偏度图。Atlas定义的网络包括初级视觉 (Vis1)、次级视觉 (Vis2)、躯体运动 (SMN)、扣带回 - 岛叶(CON)、背侧注意 (DAN)、语言 (LAN)、额顶叶 (FPN)、听觉网络 (AUD)、默认模式 (DMN)、后多模态 (PMN)、腹侧多模态 (VMN)、眶额情感 (OAN)。

3.2 转化为对微结构敏感的活体MRI

 在使用尸检样本确定细胞结构不对称后,我们打算通过使用活体MRI代理来捕捉皮质中的微观结构分化,从而扩展这项工作。具体来说,我们从 HCP T1w/T2w 图(N = 1101)中提取了强度数据,并使用多模态分割和 CA 网络图谱对其进行了汇总。T1w/T2w 强度范围通过 z 评分强度值(顶点方式)独立地针对每个半球进行均质化(图2a)。

 在该活体样本中,我们观察到从前到后的群体不对称(使用 Cohen's d)模式(图 2b)。在网络层面,右侧效应锚点位于 Vis2(Cohen's d = −2.57,P FDR  < 0.001)和 DAN(Cohen's d = −2.19,P FDR  < 0.001);左侧效应锚点位于 FPN(Cohen's d = 2.53,P FDR  < 0.001)和 LAN(Cohen's d = 2.13,P FDR  < 0.001)。有关网络左右不对称效应大小,请参阅源数据。此外,我们观察到死后细胞结构 (BigBrain) 和活体微结构 (HCP) 不对称的空间模式相似( r  = 0.482,P = 0.007,图 2c )。在对每一层进行进一步分析后,我们发现,特别是在第 III 层,两个不对称图之间表现出很强的相似性 ( r  = 0.513,P  < 0.001)。总体而言,显著相关性位于第 I-IV 层,但不位于第 V 层和第 VI 层。

随后,我们基于HCP 样本的双胞胎谱系设计,计算了不对称的遗传力 ( h2 )(图 2d)。三个最具遗传力的网络是:Vis2(h2 = 0.51  ,SE = 0.05,P FDR <  0.001)、DAN(h2  = 0.43,SE = 0.05,P FDR  < 0.001)和 FPN(h2 = 0.39  ,SE = 0.06,P FDR  < 0.001),见源数据。绝对 AI 得分与遗传力图之间的空间相关性为r  = 0.469,P= 0.001,这表明不对称性越强的区域遗传力也越高。

最后,为了探究个体变异的潜在标记,我们研究了性别(基于自我报告的出生性别)和年龄对微观结构不对称的影响(图 2e)。性别和年龄t图均显示出从前到后的方向,并与平均活体 AI 图相关(r性别 = 0.961,P  < 0.001;r年龄 = 0.690,P < 0.001)。这些发现表明,在这个相对年轻的样本中,男性和年轻个体的微观结构强度更不对称。功能网络比较的详细信息如图 2f 和 g所示。为了方便可视化,我们将年龄分为两组(即 >28 岁和 <29 岁),但 t 值是基于连续年龄报告的。经过 FDR 校正后,12 个网络中有 11 个在性别比较中具有统计学意义,仅排除 DMN(t  = −0.422,P FDR = 0.673)。12 个网络中有 4 个在年龄比较中具有统计学意义,包括 Vis2(t  = −2.797,P FDR = 0.031)、DAN(t  = −2.589,P FDR = 0.039)、FPN(t  = 4.826,P FDR  < 0.001)和 LAN(t  = 2.456,P FDR  = 0.042)。

图片

图2. a, 左、右半球的 T1w/T2w 强度值(分别进行 Z 分数计算)。紫色越深表示强度越高。b, 计算被试的平均不对称指数(AI)和相关的 Cohen’d 图。红色/棕色和蓝色/绿色表示人群层面的左侧和右侧不对称方向。AI 也被总结为功能网络,条形图中具有平均值和标准误差。Cohen d 图的阈值为FDR < 0.05(双侧)。c, 平均HCP AI 和BigBrain AI 图之间的空间相关性。置换检验用于解释空间自相关性。与层不对称的粗体相关性表示在P < 0.05 水平(双侧)上变异函数置换后的显著性。d, 通过 AI 的个体变异估计的遗传力图和网络条形图(条为标准误差)。遗传力图的阈值为FDR < 0.05,以进行多重比较校正。右图是平均AI和遗传力图之间的空间相关性。e, 在AI = 1 +性别+年龄模型中性别和年龄效应的T。紫红色分别表示女性和老年人的左侧不对称程度更高。右图是平均AI和t值图之间的空间相关性。圆点和三角点代表性别和年龄 。 为进行多重比较校正,t图的阈值为FDR < 0.05。f和g绘制了功能网络中详细的性别和年龄效应(AI平均值和标准误差)。虚线分别表示性别和年龄的t值。*表示多重比较后的统计显著性(FDR < 0.05)。所有图中点和条的颜色反映了图谱定义的功能网络,包括初级视觉 (Vis1)、次级视觉 (Vis2)、躯体运动 (SMN)、扣带回 - 岛叶(CON)、背侧注意 (DAN)、语言 (LAN)、额顶叶 (FPN)、听觉网络 (AUD)、默认模式 (DMN)、后多模态 (PMN)、腹侧多模态 (VMN)、眶情感 (OAN)。

3.3 微结构不对称与内在功能不对称相关

在确定死后和活体标志物中的微结构不对称性后,我们研究了其功能关联。为此,我们利用了同一样本(即 HCP)中的静息态功能连接 (FC),就像之前的研究一样。

为了在群体层面研究微观结构和功能不对称之间的关系,我们将平均微观结构不对称图分成 10 个区域(见图 3a-i)。然后,我们计算每个区域内的平均功能连接(FC)(见图 3a-ii),并通过从左半球(LH)中减去右半球(RH)并除以 RH 和 LH 的总和来确定功能连接不对称。我们的分析重点是半球内(即 LH_LH 和 RH_RH)连接。与具有不同程度不对称的区域相比,表现出相似不对称模式的区域之间的功能连接更强(图 3a-iii)。通过计算 T1w/T2w AI 图和 FC AI 概况之间的区域微观结构-功能相关性来定量评估这种关系(图 3b-i)。我们发现,无论是在群体层面还是在个体层面,耦合在中央和颞上区最强,在前额叶和顶叶区最弱(r  = 0.664,P变异函数 < 0.001)。如平均值和标准差图所示,这种耦合表现出明显的个体差异,特别是在整体耦合强的区域(图 3b-ii)。

最后,为了研究微结构-功能耦合的不对称性在不同区域之间的变化,我们计算了不同受试者每个区块的微结构和 FC 不对称之间的个体协变(图 3c-i)。然后,我们提取了协变的前 10%,以使用归一化角度计算亲和力矩阵。最后,使用主成分分析(PCA),我们将亲和力矩阵分解为行和列。行 PC 总结了功能概况中的微结构相似性,列 PC 总结了微结构中的功能相似性(图 3c-ii)。对于微结构 PC,前两个成分分别解释了总方差的 26.6% 和 17.4%。PC1 显示出从背外侧前额叶到中央前回的差异轴,而 PC2 显示出从颞顶交界处到外侧前额叶区域的差异轴。对于功能PC,前两个成分分别解释了总变异的48.4%和25.8%。PC1区分了前额叶和视觉区域,PC2区分了感觉和联想区域(图 3c-iii)。

图片

图3. a–i, 10 个箱(每个箱 18个部分)根据图 2b平均 AI 图(T1w/T2w)分类。a–ii, 按箱平均的组级静息态功能连接 (FC) 矩阵。a–iii, 按箱排序的 (LH - RH)/(LH + RH) 计算的 FC 不对称。紫红色和绿色表示左侧和右侧不对称。散点图按功能网络着色。b, 按区域计算的微结构-功能耦合是通过每列 180 个 T1w/T2w 和 FC AI 部分之间的皮尔逊相关系数计算的。左图显示组级别 (i) 平均图之间的耦合,右图显示耦合的平均值和标准差 (ii)。c, 微结构和功能之间的个体协变。(i) 中的矩阵表示不同受试者的 T1w/T2w AI 部分和 FC AI 部分之间的皮尔逊 r 值。然后,计算逐块亲和力矩阵,并采用主成分分析 (PCA) 分解矩阵以检测区域间相似性轴 (ii)。上图和下图是微观结构和功能分解 (iii)。前两个特征向量和特征值 (PC 载荷) 以“绿色”中的相似颜色绘制,表示区域间轮廓相似。图谱定义的网络包括初级视觉(Vis1)、次级视觉 (Vis2)、躯体运动 (SMN)、扣带回岛叶 (CON)、背侧注意 (DAN)、语言(LAN)、额顶叶 (FPN)、听觉网络 (AUD)、默认模式 (DMN)、后多模态 (PMN)、腹侧多模态 (VMN)、眶额情感 (OAN)。

3.4 微结构不对称与语言技能和心理健康的个体差异有关

 我们的最后一个目标是调查微观结构不对称的行为相关性。语言分数是通过阅读和图片词汇测试获得的。心理健康分数使用成人自我报告和 DSM 导向量表进行评估,其中包括抑郁、焦虑、躯体、回避、多动症和反社会问题。因此,包括两个语言变量、六个心理健康变量和 180 个大脑变量(区域微观结构不对称)。为此,我们进行了典型相关分析 (CCA),这是一种通过相关性估计多个独立变量和因变量的潜在维度的多变量方法。

 我们分别计算了语言和心理健康的第一个潜在维度。在微观结构不对称的第一个潜在维度和行为标记之间存在统计学上显著的相关性(r语言 = 0.489,P  < 0.001;r心理健康 = 0.446,P  < 0.001,图 4a)。图片词汇和反社会问题分数在各自的大脑行为潜在成分上具有最强的载荷(图 4b)。此外,我们观察到语言和心理健康之间大脑载荷空间模式的行为标记差异。前者显示出上部和下部区域的区分,而心理健康与不对称的前部和后部之间的区分有关,额叶区域左侧不对称越强,心理健康程度越低(分数越高)(图 4c)。前后层 AI 图与心理健康大脑负荷相似,但下上层 AI 图与语言大脑负荷相似。这可能表明,对于心理健康得分较高的个体,额叶左侧不对称性减少,枕叶右侧不对称性增加。

为了测试研究结果的稳健性,我们进行了 100 次伪随机重采样,根据双胞胎标签提取了 10%-90% 的数据(图 4d)。我们在主图中显示了平均结果(提取了 50% 的数据),其余的则显示在补充图 S4a 和 b中。我们发现第一个潜在大脑和行为维度仍然稳健(r语言 = 0.631 ± 0.018,r心理健康 = 0.637 ± 0.017)。平均 AI图与大脑负荷之间的相关性为r语言 = 0.173 ± 0.114 和r心理健康 = 0.351 ± 0.190。

图片

图4. a, 大脑潜在维度与表型之间的相关性。橙色和绿色表示心理健康和语言,其中潜在维度解释反社会行为和图片词汇得分最多。b, 语言和心理健康第一个潜在维度的表型负荷。c, 语言和心理健康第一个潜在维度的大脑负荷。d, 重采样数据以测试 CCA 的性能。我们使用双胞胎类别通过伪随机化提取了 10% 到 90% 的数据,并重新采样了 100 次。图表中显示了平均值和标准误差条。选择 50% 的数据提取来显示 100 个样本的分布。PicVocab:图片词汇;ADHD:注意力缺陷多动障碍。

3.5 一致性验证

为了使用独立样本复制我们的研究结果,我们对两个外部数据集进行了体内分析,这些数据集对皮质微结构进行了不同的成像测量。这些数据集包括年轻成年人的 MIC(qT1 松弛测量,N = 50)以及青少年和年轻成年人的 NSPN(MT,N = 286)。

关于 MICs qT1 弛豫数据,样本人口统计数据与 HCP 数据相似(女性:46%,年龄集中在 25-35 岁)。再次观察到前后不对称模式,MICs 与 HCP AI 图之间存在显著相关性(r  = 0.548,P = 0.004)。性别效应的空间模式也得到了复制(r 性别  = 0.731,P < 0.001),而年龄效应没有得到复制(r 年龄 = 0.224,P  = 0.062)。我们使用了使用来自 NSPN 的多参数映射的MT 图像来解决与 T1w/T2w 相关的潜在传输场问题。样本由年龄在 14 至 25 岁之间的个体组成(平均值±SD:19.1±2.9),性别比例均衡(女性:51%)。我们再次观察了前后不对称模式,发现 HCP 和 NSPN 之间存在显著相关性(r  = 0.369,P = 0.047)。此外,年龄和性别效应的空间模式也可以在这个较年轻的样本中复制(r 性别 = 0.358,P  < 0.001;r 年龄 = 0.323,P < 0.001)。总之,这些分析表明微观结构不对称性在不同的微观结构测量值和组织学中是一致的。

为了进一步检验研究结果的稳健性,我们还使用原始强度评分通过 (LH - RH)/(LH + RH) 计算不对称指数。总体研究结果是一致的,但 在内侧额叶皮质的不对称、性别和年龄t图方面显示出细微差异(所有空间 Pearson r > 0.9)。此外,我们还测试了惯用手和微观结构不对称之间的潜在关联。我们没有发现任何超过统计阈值的包裹。

4. 讨论

大脑结构和功能组织中的不对称与语言等关键的人类认知功能有关,并与神经精神疾病有关。在这项研究中,我们使用多尺度方法来研究超高分辨率的微观结构不对称,并将我们的模型应用于体内数据以检查个体差异和功能相关性。在超高分辨率尸检人脑和三个体内样本中观察到从前部到后部区域微观结构一致的左右不对称模式。使用超高分辨率尸检模型,我们发现不同层的不对称模式不同,浅层显示前后模式,深层显示下上模式。此外,利用体内微观结构模型,我们使用双胞胎模型证明微观结构不对称随年龄和自我报告的性别而变化,并且是可遗传的。最后,我们通过将微观结构不对称与内在功能连接概况的不对称以及详细描述语言技能和心理健康特征的个体差异的行为标记联系起来,确定了这些发现的功能相关性。这可以被视为健康人群中神经精神风险的代表。语言技能沿上下轴变化,而心理健康特征沿前后轴变化,这表明心理健康可能与浅层功能有关,但语言可能与深层功能协调,这种分歧可能植根于两种模式的神经发育轨迹。总之,我们的研究结果表明,皮质大脑在细胞结构和微观结构方面存在一致的不对称性,以及其功能相关性。

在当前的研究中,我们评估了人类皮质细胞结构的不对称性,并发现了前后轴上从左到右的总体不对称模式。先前对区域细胞结构的研究表明,左半球在下额叶皮质(即布罗德曼区 (BA) 45)和背外侧前额叶皮质(即 BA 9 )中的神经元密度较高。这些神经元被归因于第三层中的锥体神经元。布罗卡区前区域扭矩也报告了向左的不对称,枕叶视觉空间区的后区域扭矩也报告了向右的不对称。不对称的前后分化可能与神经发育模式和皮质成熟有关。事实上,后部区域表现出出生后的早期发育,而前部区域则在青春期成熟,这可以通过细胞和骨髓结构以及连接的变化来说明58。虽然本研究没有评估随时间推移的发展模式,并且受试者(BigBrain 数据)也超过 60 岁,但观察到的不对称性可能仍然是成熟时间与经验依赖性可塑性相结合的结果,这是由于左右半球的功能作用不同。

此外,我们观察到明显的深度变化,上层前后不对称,深层上下不对称。总体而言,儿童时期微观结构的成熟模式已证明遵循后前模式。先前的研究报告称,青少年时期感觉区域和旁边缘区域皮层内微观结构的成熟情况不同。特别地,中深层似乎在青少年中具有优先发展,特别是在空间上对应于注意力和语言区域的单模态和异模态区域。在我们的工作中,语言网络从向左(浅层)转移到向右不对称(深层),这可能与皮层间连接的发育和成熟有关。皮质的层状结构在协调皮质区域与皮质下和皮质之间的功能过程和连接方面发挥着重要作用。对于皮质-皮质或皮质-皮质下通路,细胞和突触结构在各层之间存在差异,因此它们会导致目标投射神经元的计算不同。虽然观察各层的不对称性会引发关于皮质功能特化的神经解剖学起源的新假设和新观点,但表明不对称性不仅在皮质地幔上随空间变化,而且还随其深度变化。

使用体内成像、T1w/T2w 图、qT1 弛豫法和 MT 也可以识别前后方向的微结构不对称。先前的研究表明,T1w/T2w 中的前后不对称模式部分是由透射场而不是微结构本身产生的。然而,T1w/T2w图像已针对部分 B1+ 偏差进行了校正(参见方法),并且使用翻转角度图进一步校正图像可能会降低真实信号。此外,我们使用 qT1 和 MT 来验证我们的体内结果并观察到所有指标的一致性。然而,本研究中使用的 qT1 和 MT 对比度可能受透射场的影响较小,这表明至少有一部分影响可能超出信号噪声。此外,尽管所有 MRI 测量都对髓鞘形成敏感,但它们仍然存在差异。理论上,MT 和 qT1 检测组织中脂质和水之间的交换和交叉松弛,T1w/T2w 表示基于神经生物学原理进行关联,而不是在无髓鞘水池中使用最小二乘法拟合衰减曲线。与 MT 和 qT1 相比,T1w/T2w包含更多的非髓鞘信号。利用体内数据的个体间模型,我们探讨了其与测试样本中年龄和性别的相关性。我们发现整体上不对称区域越多,年龄效应就越强。此前有报道称,英国生物银行的中老年样本和年轻人的皮质对称性会随着年龄的增长而增加。展望未来,实施规范模型可以阐明整个生命周期中微观结构不对称的发展轨迹,从而促进个体轨迹的识别。先前的研究也报告了皮质结构各项指标的显著性别差异,这可能与不同的性激素表达和生理标志物有关。事实上,在目前的研究中,我们观察到男性相对于女性的整体不对称性更强。相关研究报告称,男性相对于女性的整体平均微观结构更高,偏度更低,这种差异随女性(自我报告的)激素状态而变化。然而,在目前的研究中,我们只能触及这些影响大脑微观结构不对称的神经内分泌、生理和年龄相关因素。进一步的研究,包括激素数据和更广泛的年龄范围,可能会进一步揭示观察到的年龄与自我报告的性别与大脑不对称之间关联的潜在原因和后果。值得注意的是,在目前的研究中,我们发现惯用手和微观结构不对称之间没有关联。其他研究要么在多中心 ENIGMA 数据中报告惯用手与皮质厚度和表面积之间几乎没有关联。然而,在英国生物银行的几个地区,惯用手和惯用手的多基因风险评分与宏观结构不对称有关。未来的研究可能侧重于荟萃分析,以确定惯用手是否与微观结构不对称有关,并发表更多论文,或使用更细致的灵巧性和大脑解剖学研究。

我们发现微结构和内在功能在半球内具有相似的偏侧化方向。在大脑皮层中,具有相似细胞结构的区域往往具有相似的功能连接概况。我们表明,这一原则也适用于微观结构和功能连接的不对称。特别是,躯体运动和语言相关区域显示出功能和微观结构不对称概况之间的增强融合。这些区域具有高度专业化的功能,可能表明功能专业化可能是由皮质不对称引起的。与此相关,通过个体间共变,我们观察到功能网络内的区域在微观结构不对称概况方面具有更多相似性,再次强调了微观结构不对称与内在功能之间的联系。这种模式可以解释为表明活动依赖性可塑性在一定程度上塑造了观察到的微观结构不对称,最终支持功能连接区域中相似的微观结构概况不对称。同时,该模型的逆模型,即微结构引导函数,揭示了更清晰的组织模式。

在探究微观结构不对称与行为结果的功能相关性时,我们观察到语言的上位-下位分化模式。这主要与颞叶和感觉运动区域的分化有关,这在空间上反映了大大脑第五层的不对称模式。第五层是皮质的主要输出层,主要将信号传递到皮质下结构,但同时显示出连接配置文件作为神经元类型的函数的明显差异。除此之外,我们发现大大脑语言网络右半球的细胞密度低于左半球。因此,观察到的模式可能与更深的皮质层(颞叶和感觉运动层)细胞的分化有关,这种分化与不同的输出配置文件有关,最终导致语言行为的差异。其次,我们发现心理健康的行为标志与不对称的前后分化有关,不对称存在于大脑浅层,也存在于皮质微结构的整体成熟模式中。各种研究都报告了微结构与神经精神疾病之间的关联,包括抑郁症、强迫症和冲动症以及精神分裂症。通过大样本调查,可以研究皮质大脑成熟不对称与神经发育状况之间的相互关系,扩展目前关于对称微结构模式成熟分化与疾病进展的关系的研究。

虽然我们的研究已经对皮质微观结构不对称产生了重要见解,但必须解决几个需要澄清的局限性。首先,虽然 BigBrain(N = 1)提供了对超高分辨率皮质微观结构的独特见解,并与我们的体内模型相关联,但结果仅限于一个主题。对层状变化敏感的超高分辨率神经成像(例如 7 T 或 9.4 T MRI)的进一步研究也将有助于理解个体差异的层级标记。虽然 T1w/T2w 图像显示出强烈的前后不对称模式,并且已经发现了来自其他微观结构测量的一致验证,但它仍然需要更多的 B1+ 偏差校正来减少 HCP T1w/T2w 中的不均匀性。此外,虽然我们年轻成人样本中观察到的年龄效应图与平均不对称图相关,但在 MIC 和 NSPN 数据集中没有一个地块表现出显着的年龄效应。青春期观察到的轻微变化可能源于效应量较小或样本量不足以检测出统计意义。此外,必须承认,本研究中使用的心理健康数据仅适用于健康个体,在将这些发现推断到临床样本时应谨慎,因为临床样本中可能存在我们研究中未考虑到的极端情况。

总之,我们的研究采用了多尺度方法来研究人类皮层中的微观结构不对称。我们在尸检样本中描述了层状不对称,并在活体中描述了个体不对称。我们的研究有助于加深我们对微观尺度皮层不对称的理解,包括深度和区域间空间差异、年龄和性别差异、基于双胞胎模型的行为遗传学、与功能连接组学的整合以及与语言和心理健康行为标记的关联。这些发现对于阐明皮层不对称背后的生物学机制及其在健康和疾病中的功能相关性具有重要意义。

5. 方法

我们在本研究中使用的数据集是开放源的,并已获得当地研究伦理委员会的批准。本研究符合杜塞尔多夫海因里希海涅大学医学院独立研究伦理委员会制定的所有相关伦理法规(研究编号 2018-317)。所应用的 MRI 数据和方法的细节与同一样本中的相关工作相似。为了完整性,在此再次提供它们。

5.1 数据集和图像采集与预处理

5.1.1 BigBrain

 BigBrain是一个 20 µm3超高分辨率图谱,包含一名 65 岁男性的尸检大脑,由 Merker 染色切片的数字体积重建创建(https://ftp.bigbrainproject.org/)。BigBrain大脑皮层的六层先前使用卷积神经网络进行分割,并且可以对层边界进行表面重建。我们通过沿每层深度在 10 个等体积表面(共 60 个表面)上对100 µm 分辨率 BigBrain 图像的染色强度进行采样,提取了 BigBrain 大脑皮层的分层皮层轮廓。由此产生的分层皮层轮廓反映了每个位置六个皮层深度上神经元大小和密度的变化。

为了减少计算需求,我们通过 BigBrainWarp 将图像从 BigBrain 原生表面空间下采样到 Glasser 多模态分区,这是一个每个半球有 180 个分区的同源图谱。为了增强功能注释,我们使用了皮质功能网络图谱,其中包括 12 个网络:初级视觉 (Vis1)、次级视觉 (Vis2)、躯体运动 (SMN)、扣带回-岛叶 (CON)、背侧注意 (DAN)、语言 (LAN)、额顶叶 (FPN)、听觉网络 (AUD)、默认模式 (DMN)、后多模态 (PMN)、腹侧多模态 (VMN) 和眶额情感 (OAN)。

5.1.2 HCP

 我们使用了人类连接组计划 (HCP) S1200 版本中的 T1w/T2w 图像,该图像可从 HCP DB ( http://www.humanconnectome.org/ ) 下载。HCP S1200 包括 1206 人(656 名女性),由基因鉴定和报告的 334 对同卵双胞胎、152 对异卵双胞胎和 720 对单胎组成。我们纳入了通过 HCP 质量控制和保证标准89、90后已发布扫描和数据的个体。最后,为了进行基因分析,我们纳入了 1101 名具有良好 T1w/T2w 图像的健康受试者(年龄:28.8 ± 3.7 岁),其中54.4% 为女性,332 人为同卵双胞胎。

MRI 数据是在配备 32 通道头部线圈的 HCP 定制 3 T Siemens Skyra 上获取的。使用 3D-MP-RAGE 序列(0.7 mm 等体素,矩阵 = 320 × 320,256 个矢状切片;TR = 2400 ms,TE = 2.14 ms,TI = 1000 ms,翻转角 = 8;iPAT = 2)获取两张具有相同参数的 T1w 图像。使用具有相同几何形状的 3D T2-SPACE 序列获取两张 T2w 图像(TR = 3200 ms,TE = 565 ms,可变翻转角;iPAT = 2)。T1w 和 T2w 扫描是在同一天获取的。用于获取 Freesurfer 分割的流程在之前的文章89中详细描述。预处理步骤包括 T1 和 T2 加权扫描的联合配准,然后校正 T1w 和 T2w 图像的 B1 偏差和一些 B1+ 偏差26,89。将预处理后的图像非线性配准到 MNI152 空间,然后使用 FreeSurfer 5.3 进行分割和表面重建。将 T1w 图像除以对齐的 T2w 图像,以为每个受试者生成单个体积 T1w/T2w 图像。使用MSMAll 91,92将皮质表面与半球匹配的 conte69 模板对齐。值得注意的是,这种对比度消除了与接收线圈相关的不均匀性,并增加了对皮质内髓鞘的敏感性。

强度值是在软脑膜和白质表面之间估计的。以前的论文已经使用这些数据来生成等体积轮廓强度。我们将图像从 conte69 空间下采样到多模态图谱。在本研究中,我们对等体积表面的强度值取平均值,并为每个被试的左半球和右半球分别进行 z 评分。

5.1.3 MICs

为了进行复制分析,我们使用了公开的微结构信息连接组学 (MIC) MRI 数据集的定量 T1 图像,该数据集可从加拿大开放神经科学平台的数据门户 ( https://portal.conp.ca ) 下载。该数据集包含 50 名健康年轻人 (23 名女性;29.54 ±5.62 岁;47 名右撇子) 的多模态数据,由蒙特利尔神经研究所和医院的脑成像中心使用 3 T 西门子 Magnetom Prisma-Fit 和 64 通道头部线圈收集。为了采集 qT1 弛豫数据,使用了 3D 磁化准备的 2 快速采集梯度回波序列(3D-MP2RAGE;0.8 mm 各向同性体素,240 个矢状切片,TR = 5000 ms,TE = 2.9 ms,TI_1 = 940 ms,T1_2 = 2830 ms,翻转角 1 = 4°,翻转角 2 = 5°,iPAT = 3,带宽= 270 Hz/px,回波间隔 = 7.2 ms,部分傅里叶= 6/8)。将两个反转图像组合起来进行 qT1 映射。基于脂肪组织与房水组织94相比不同的 T1 弛豫时间,我们在此使用 qT1 作为灰质髓鞘的指标,因此作为微观结构的代理。MRI 处理工具micapipe 用于数据预处理和强度提取。简而言之,预处理包括 MP2RAGE 的背景去噪、T1W 和 MP2RAGE 的重新定位、N4偏差校正、T1W 图像的强度重新缩放以及与 MNI152 空间的非线性配准。此外,使用 Freesurfer 7.0 从原生 T1w 采集中执行皮质表面重建。

5.1.4 NSPN

 精神病学神经科学 (NSPN) 队列通常包括 2245 名年龄在 14 至 26 岁之间的青少年(平均年龄 ± SD:19.1 ±3.0 岁,女性:54%)。参与者是在剑桥郡和伦敦北部招募的,根据一种平衡了性别、种族和五个年龄层(14-15、16-17、18-19、20-21、22-25)参与者人数的抽样设计。在这里,我们纳入了 286 名有微观结构神经影像数据的个体(平均年龄 ± SD:19.1 ± 2.9 岁,女性:51%)。

使用多参数映射 (MPM) 序列在剑桥(2 个站点)和伦敦(1 个站点)的三台相同的 3 T 西门子 MRI 扫描仪(Magnetom TIM Trio)上获取磁化转移 (MT) 数据以近似髓鞘含量。使用标准 32 通道射频 (RF) 接收头部线圈和 RF 体线圈进行传输。MPM 包括三个多回波 3D FLASH 扫描:主要 T1 加权(重复时间 (TR) = 18.7 ms,翻转角 = 20°)和主要质子密度 (PD) 和 MT 加权(TR = 23.7 ms;翻转角 = 6°)。为了实现 MT 加权,在激发之前施加了非共振高斯形 RF 脉冲(持续时间为 4 ms,与水共振的频率偏移 = 2 kHz;标称翻转角 = 220°)。使用交替读出极性在 2.2 至 14.7 毫秒之间的6个等距回波持续时间 (TE) 记录几个梯度回波,以进行 MT 加权采集。纵向弛豫率和 MT 信号由 MT 饱和参数分开,从而产生一个可抵抗弛豫时间和场不均匀性的半定量测量。其他采集参数包括 1 毫米各向同性分辨率、176 个矢状分区、视场 (FOV) = 256×240 毫米、矩阵= 256×240×176、非选择性射频激励、射频破坏相位增量 = 50 ̊、在相位编码 (PE) 方向 (AP) 使用GRAPPA 因子二进行并行成像、读出带宽 = 425 Hz/像素、分区方向上的 6/8 部分傅里叶。采集时间约为 25 分钟。参与者戴着耳罩并被指示静躺。

使用 Freesurfer 5.3.0 基于 T1 加权 (T1w) 图像进行表面重建。对重建结果进行目视检查。添加了控制点以改善分割,但如果质量持续较差,则排除扫描。

5.2 不对称性指数

我们通过从同源区域中的左半球值中减去右半球值来计算不对称指数(AI)。如上所述,我们通过回归 BigBrain 数据的平均表面强度分别对左半球和右半球进行预处理,然后标准化残差强度。对于 HCP、MIC 和 NSPN,我们获得了平均皮质强度图,然后分别对左半球和右半球的图进行 z 评分。对于功能连接不对称,我们通过 (LH - RH)/(LH + RH) 计算 AI。关于 BigBrain 中的偏度不对称,使用偏度公式:偏度 = sum((强度表面- 平均值) 3)/SD 3,其中平均值和 SD 是在 60 个表面上计算的。

5.3 性别和年龄效应

 我们首先对模型使用固定效应估计:AI = 1 + 性别 + 年龄 + 性别*年龄。我们发现年龄和性别之间没有显著的相互作用。然后我们使用非相互作用模型:AI = 1 + 性别 + 年龄来获得性别和年龄的t值和P值。然后应用错误发现率(FDR) 对性别和年龄t值图进行多重比较校正。所有步骤均在Python 中使用 BrainStat 包执行。HCP 图中着色的区域在 FDR 校正后幸存下来(q < 0.05)。我们没有对 NSPN 和 MICs 数据集执行FDR 校正,因为幸存的包裹太少。相比之下,对于不同数据集之间的t和不对称图,我们使用了非阈值图。

我们使用变异函数置换来执行脑图之间的相关性以测试空间自相关性。变异函数量化距离d的所有空间分离点对之间的方差。例如,纯白噪声在所有空间尺度上都有相等的变化,因此具有平坦的变异函数(即不依赖距离)。因此,具有很少空间自相关的脑图将具有几乎平坦的变异函数。强自相关的脑图在空间近端区域(在较小d时)之间的变异小于在相距较远的区域之间的变异。我们从多峰分割(即 180* 180)中获得了左半球的测地线距离矩阵,并生成了 1000 个置换的空间自相关保留替代脑图,其变异函数与目标脑图的变异函数大致匹配。

5.4 遗传力估计

我们基于 HCP 的双胞胎设计分析了遗传力。简而言之,我们通过顺序寡基因连锁分析程序(SOLAR,版本 9.0.0)计算了遗传力估计值和标准误差。SOLAR 使用最大似然方差分解法,通过将家庭成员之间的协方差建模为遗传接近度的函数,来确定家庭和环境影响对表型的相对重要性。遗传力,即狭义的遗传力h 2,表示表型方差(σ 2 p)占总加性遗传方差(σ 2 g)的比例,即h 2  = σ2 g /σ 2 p。与遗传学不太相似的个体相比,遗传学更相似的个体之间表现出更强的协方差的表型具有更高的遗传力。在本研究中,我们使用先前研究建议的 A + E 模型量化了功能梯度不对称的遗传性,因为 A + E 模型比 HCP 105中的 A + E + C(共同环境)模型具有更高的估计遗传性的准确度。我们还在补充图 S11中加入了 A + C + E 模型。我们将年龄、性别、年龄2和年龄*性别作为协变量添加到我们的模型中。

5.5 微结构-功能非对称耦合

 我们采用了三种方法来了解微观结构和功能不对称之间的关系。我们首先将平均微观结构不对称图分成 10 个区间,并沿着这 10 个区间绘制 FC 不对称,以测试在非对称或非对称区间中,组级 FC 不对称是更强还是更弱。其次,我们在群体和个体层面上将微观结构不对称与 FC 不对称在空间上相关联。具体来说,计算了微观结构不对称(在 180 个区域中)与基于(180*180)种子的功能不对称图之间的相关系数,从而得出区域耦合分数。接下来,获得了所有 180 个功能种子的微观结构和功能之间的区域耦合图(180 个r值)。关于跨受试者的协变,对于给定区域,我们执行以下操作:沿“区域 x,一个微结构不对称标记”和(区域 x,其连接的 180 个功能不对称标记)沿“区域 x”轴相关以获得该区域的 180个 r值,表明该区域的微结构不对称如何支持跨受试者与该区域的功能连接不对称。对所有 180 个地块重复此过程。可以得到 180*180 协变矩阵,其中列作为微结构概况,行作为功能概况。然后,使用主成分分析(PCA) 分解协方差矩阵与前 10% 分数的稀疏性的亲和力。这些主成分反映了不对称微结构-功能耦合的组织特征,例如,具有相似不对称耦合概况的两个区域沿 PC 获得接近的载荷。这些步骤是使用 BrainSpace包在 Python 中完成的。。

5.6 大脑与行为的关联

我们使用典型相关分析来解决微结构不对称与行为评分之间的多变量关联。CCA 是一种统计方法,它找到两个随机变量的线性组合,从而使组合变量之间的相关性最大化。在实践中,CCA 主要被用作单变量一般线性模型的替代品来链接不同的模态,因此是多模态数据融合中的主要和强大的工具。然而,复杂的多变量公式和模糊的能力仍然是 CCA 及其变体广泛应用的障碍。我们分别测试了语言和心理健康的大脑行为关联。语言分数是通过 NIH 工具箱中的阅读和图片词汇测试获得的。心理健康评分包括抑郁、焦虑、躯体、回避、多动症和反社会问题,通过成人自我报告和 DSM 导向量表进行评估。

图片词汇测试是 CAT 格式,用于测量 3-85 岁人群的一般词汇知识,被认为是衡量结晶能力(这些能力通常更多地依赖于过去的学习经验,并且在整个生命周期中保持一致)的有效方法。计算机屏幕上会向参与者显示一个单词的录音和四张照片,并要求参与者选择与单词含义最接近的图片。分数越高,词汇能力越强。阅读测试是 CAT 格式,用于测量阅读解码技能和结晶能力,这些能力通常更多地依赖于过去的学习经验,并且在整个生命周期中保持一致,适用于 7-85 岁人群。要求参与者尽可能准确地阅读和发音字母和单词。分数越高,阅读能力越好。年龄调整量表分数:参与者分数使用工具箱规范样本的适合年龄范围(18-29 岁或 30-35 岁范围)进行规范化,其中 100 分表示表现达到全国平均水平,115 分或 85 分表示表现比参与者年龄组的全国平均水平高或低 1 个标准差。我们在当前研究中使用了年龄调整后的语言分数。

成人自我报告是一份包含 126 项的自我报告问卷,面向成人(18-59岁),评估适应性功能和问题的各个方面。问卷为以下综合征量表提供评分:焦虑/抑郁、孤僻、躯体不适、思维问题、注意力问题、攻击行为、违反规则行为和侵入行为。问卷为以下 DSM 导向量表提供评分:抑郁问题、焦虑问题、躯体问题、回避型人格问题、注意力缺陷/多动问题(注意力不集中和多动/冲动分量表)和反社会人格问题。此外,问卷还询问了以下物质的使用情况:烟草、酒精和毒品。项目按 3 分量表评分:0-不真实、1-有些或有时真实、2-非常真实或经常真实。在本研究中,我们使用 DSM 导向量表和性别和年龄调整后的 T 分数作为心理健康评分。

我们还使用了伪随机重采样(对每个样本聚类相同数量的双胞胎)来测试大脑行为关联和大脑负荷模式的稳健性。我们首先提取 10% 到 90% 的数据,并重复这些步骤 100 次。因此,对于每个百分比的数据提取,都会有 100 个 CCA 模型和与前后不对称模式的相关性。我们展示了每个百分比的数据提取的平均值和标准误差条图表。

参考文献:Microstructural asymmetry in the human cortex.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值