【Gemini API】model = genai.GenerativeModel()的参数说明

1. generation_config

有指定类:GenarationConfig

具体用法:

  1. 实例化 GenarationConfig 对象
generation_config = GenerationConfig(
      max_output_tokens=8192,
      top_k=10,
      top_p=0.1,
      temperature=1,
)
  1. 作为参数给 genai.GenerativeModel()
model = genai.GenerativeModel(
  model_name="gemini-1.5-flash",
  generation_config=generation_config,
}

2. safety_settings

  1. 常用设置:
safety_settings={
        HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
        HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
        HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
        HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
}
  1. 作为参数,给 genai.GenerativeModel()
model = genai.GenerativeModel(
  model_name="gemini-1.5-flash",
  generation_config=generation_config,
  safety_settings=safety_settings,
}

3. system_instruction

这个就不多说了,写上你的提示词就好啦

### 使用Python调用大模型API进行情感分析 为了通过Python调用大型模型API来执行情感分析,可以选择已有的预训练模型并传递适当的任务指令给这些模型。以下是基于Google Gemini和豆包大模型的两种方法。 #### 方法一:使用Google Gemini API 首先需要安装`google-generativeai`库,并获取有效的API Key。以下是一个完整的代码示例: ```python import google.generativeai as genai genai.configure(api_key="your_api_key_here") model = genai.GenerativeModel('gemini-pro') def analyze_sentiment(text): prompt = f"Analyze the sentiment of this text and provide a detailed explanation: {text}" response = model.generate_content(prompt) return response.text example_text = "I love sunny days because they make me feel happy." sentiment_analysis_result = analyze_sentiment(example_text) print(sentiment_analysis_result) ``` 上述代码定义了一个函数 `analyze_sentiment()` 来发送带有特定提示的情感分析请求[^1]。 --- #### 方法二:使用豆包大模型API 对于豆包大模型,同样可以通过指定任务描述的方式让其完成情感分析工作。下面展示了一种可能的方法: ```python import requests api_url = "https://api.doubao.com/v1/generate" headers = {"Authorization": "Bearer your_dou_bao_api_key"} def analyze_sentiment_with_dou_bao(text): payload = { "prompt": f"Perform sentiment analysis on the following sentence: '{text}'. Provide an interpretation.", "max_tokens": 100, "temperature": 0.7 } response = requests.post(api_url, headers=headers, json=payload) result = response.json() return result["choices"][0]["text"] sample_sentence = "The movie was terrible; it made me so angry!" dou_bao_sentiment_output = analyze_sentiment_with_dou_bao(sample_sentence) print(dou_bao_sentiment_output) ``` 此部分展示了如何利用豆包大模型及其HTTP接口来进行同样的操作[^2]。 注意,在实际部署之前应验证所使用的API密钥是否有效,并确保遵循各服务提供商关于数据隐私保护的规定。 --- ### 注意事项 - 如果返回的结果为空或者不符合预期,则可能是由于API配置错误引起的。 - 不同的大规模语言模型可能会有不同的性能表现,因此建议尝试多个选项找到最适合当前应用场景的那个。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值