单目深度预测研究

本文探讨单目深度预测在计算机视觉中的重要性,该技术涉及从RGB图像中估算深度信息,用于三维重建、自动驾驶等领域。尽管存在ill-posed问题,但随着深度学习的发展,尤其是CNN和encoder-decoder架构的进步,研究已取得显著成果。从早期的深度学习引入到近期基于Transformer的方法,深度预测有监督的研究不断演进,为实时应用提供了可能。
摘要由CSDN通过智能技术生成

1. 研究背景与意义

       从RGB图中预测深度。利用二维图像来进行场景的深度估计是计算机视觉领域的经典问题之一也是实现三维重建场景感知的重要环节。深度信息有助于更好地理解3D场景,也有助于完成许多计算机视觉任务。如机器人定位、自动驾驶、三维重建、3D目标检测等;  

来源:深度预测任务可以由专用硬件完成,如微软的测距仪和 Kinect 摄像头,但价格昂贵、场景有限,大多数图像都是由普通相机拍摄的,只含场景的颜色信息。为了重建深度信息,研究人员尝试直接从 RGB 图像中预测深度,这种方法与通过专业硬件设备获得深度信息相比,更具有普遍性。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值