麻省理工大学线性代数导论笔记 - Lecture 10 四个基本子空间

学习视频来源:麻省理工公开课_线性代数导论 讲师:Gilbert Strang

http://open.163.com/special/opencourse/daishu.html


Lecture 10 四个基本子空间

4 subspaces 四个子空间
  • column space 列空间 C(A) C ( A ) A A 的列的所有线性组合。
  • row space 行空间R(A) A A 的行的所有线性组合。<=> C(AT) AT A T 的列的所有线性组合。
  • null space 零空间 N(A) N ( A ) Ax=0 A x = 0 的所有 x x
  • left null space 左零空间N(AT) ATx=0 A T x = 0 的所有 x x

A m×n m × n 时, C(A) C ( A ) m R m 中, C(AT) C ( A T ) n R n 中, N(A) N ( A ) n R n 中, N(AT) N ( A T ) m R m 中。

理解了这些空间,就掌握了线性代数的半壁江山。那什么是“理解这些空间”呢?我们要知道它们的一组基以及它们的维数:

  • C(A) C ( A ) 的维数是主变量的个数(秩) r r ,它的一组基就是A的主列。

  • R(A) R ( A ) C(AT) C ( A T ) 的维数也是 r r (行空间和列空间有同样的维数),它的一组基就是A的最简形矩阵 R R 的前r行( C(A)C(R) C ( A ) ≠ C ( R ) R(A)=R(R) R ( A ) = R ( R ) )。

  • N(A) N ( A ) 的维数是自由变量的个数 nr n − r ,它的一组基就是 Ax=0 A x = 0 特殊解(见Lecture 7 和 8)。

  • N(AT) N ( A T ) 的维数是自由变量的个数 mr m − r AT A T n×m n × m 的矩阵)。

    让我们仔细分析一下 N(AT) N ( A T ) 的基:

    已知 ATy=0 A T y = 0 ,对方程的两边进行转置,得 yTA=0T y T A = 0 T ,这就是称为左零空间的原因。

    我们通过 Gauss - Jordan 消元法求得矩阵 [Am×nIm×m] [ A m × n I m × m ] 的最简阶梯形 [Rm×nEm×m] [ R m × n E m × m ] EA=R E A = R 。当 R=I R = I E=A1 E = A − 1

    于是在 E E 中和A相乘得到 R R 中零行的行向量就组成了N(AT)的基。

假设有一个由所有的 3×3 3 × 3 矩阵组成的矩阵空间 M M ,我们将矩阵们都视为向量。 M M 的子空间有upper triangles 上三角矩阵、symmetric matrices 对称矩阵、diagonal matrices 对角矩阵等。则对角矩阵的一组基可以是 100000000 ( 1 0 0 0 0 0 0 0 0 ) 000030000 ( 0 0 0 0 3 0 0 0 0 ) 000000007 ( 0 0 0 0 0 0 0 0 7 )

这种思想就像把 n R n 的概念延伸到 n×n R n × n ,这时空间仍对加法和数乘封闭。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值