麻省理工大学线性代数导论笔记 - Lecture 12 图和网络

学习视频来源:麻省理工公开课_线性代数导论 讲师:Gilbert Strang

http://open.163.com/special/opencourse/daishu.html


Lecture 12 图和网络

今天我们进一步讨论(老师认为)在applied math 应用数学中最重要的模型 ——graph 图。我们画出一个图,写出对应的矩阵,这便是矩阵产生的重要来源。 一个图包括nodes 结点和edges 边。
在这里插入图片描述
这个图里包含 4 个结点,5 条边,我们可以将每条边都指定参考方向用于区分正负,比如可以考虑为一个电路网络。 在这个例子中,将使用电势、回路、电流之类的词汇(当然这个模型还可以表示为液压系统、建筑结构等)。我们通过构造一个incidence matrix 关联矩阵来解析这个图的含义。

矩阵的一行相当于图的一条边,矩阵的一列相当于图的一个结点。

A = ( − 1 1 0 0 0 − 1 1 0 − 1 0 1 0 − 1 0 0 1 0 0 − 1 1 ) A = \left (\begin{matrix} -1&1&0&0\\0&-1&1&0\\-1&0&1&0 \\-1&0&0&1\\0&0&-1&1\end{matrix} \right) A=10110110000110100011

根据关联矩阵的主要结构,我们可以回答一些关于矩阵的主要问题。

  • 矩阵的零空间 A x ⃗ = 0 A\vec x=0 Ax =0 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x 4 x_4 x4为各结点的电势)

    A x = ( x 2 − x 1 x 3 − x 2 x 3 − x 1 x 4 − x 1 x 4 − x 3 ) = ( 0 0 0 0 0 ) Ax=\left( \begin{matrix} x_2-x_1\\x_3-x_2\\x_3-x_1 \\x_4-x_1\\x_4-x_3\end{matrix} \right)=\left(\begin{matrix} 0\\0\\0\\0\\0 \end{matrix} \right) Ax=x2x1x3x2x3x1x4x1x4x3=00000

    通过矩阵 A A A可以算出各边上的差值,即结点间的电势差。易见 x ⃗ = c ( 1 1 1 1 ) \vec x=c\left( \begin{matrix} 1\\1\\1\\1 \end{matrix} \right) x =c1111 c c c为常数,即等电势。 d i m ( N ( A ) ) = 1 dim(N(A))=1 dim(N(A))=1 r a n k ( A ) = n − 1 = 3 rank(A) = n -1=3 rank(A)=n1=3

    在这个例子中,我们先确定一个结点的电势,典型方法是将它接地,令其电势为 0,作为求其他电势的基础,这意味着最后一列不起任何作用。

  • 矩阵转置后的零空间 A T y ⃗ = 0 A^T\vec y=0 ATy =0 y 1 y_1 y1 y 2 y_2 y2 y 3 y_3 y3 y 4 y_4 y4 y 5 y_5 y5为各边上的电流)

    A T y = ( − y 1 − y 3 − y 4 y 1 − y 2 y 2 + y 3 − y 5 y 4 + y 5 ) = ( 0 0 0 0 ) A^Ty=\left (\begin{matrix} -y_1-y_3-y_4\\y_1-y_2\\y_2+y_3-y_5 \\y_4+y_5\end{matrix} \right)=\left( \begin{matrix} 0\\0\\0\\0 \end{matrix} \right) ATy=y1y3y4y1y2y2+y3y5y4+y5=0000
    在这里插入图片描述
    A T y ⃗ = 0 A^T\vec y=0 ATy =0 有一个著名的名字:Kirchoff’s Current Law 基尔霍夫电流定律,简称KCL,它是平衡方程,守恒定律。假设 y 1 y_1 y1 y 3 y_3 y3 y 4 y_4 y4是从结点 1 流出的电流,则 − y 1 − y 3 − y 4 = 0 -y_1-y_3-y_4=0 y1y3y4=0说明结点 1 的净电流为 0。

    回到线性代数,由前文的课可知, d i m ( N ( A T ) ) = m − r a n k ( A T ) = 5 − 3 = 2 dim(N(A^T))=m-rank(A^T)=5-3=2 dim(N(AT))=mrank(AT)=53=2 A T A^T AT零空间的基可以表示为 ( 1 1 − 1 0 0 ) + ( 0 0 1 − 1 1 ) \left (\begin{matrix} 1\\1\\-1\\0\\0 \end{matrix} \right)+\left( \begin{matrix} 0\\0\\1\\-1 \\1 \end{matrix} \right) 11100+00111。第一个向量是左边回路内的电流,第二个向量是右边回路内的电流。

  • A A A的主列
    在这里插入图片描述

    这个矩阵的主列(线性无关)为第 1、2、4列。我们得到了一个同样有 4 个结点,只有 3 条边的小图,且它没有回路。如果再加一条边,必然会得到回路。没有回路的图我们把它叫作tree 树。

综上, d i m ( N ( A T ) ) = m − r dim(N(A^T))=m-r dim(N(AT))=mr <=> 相互无关的回路数量 = = = 边的数量 − - (结点数量 − 1 -1 1)。即结点的数量减去边的数量加上回路的数量等于 1。此公式对任意的图都成立,这就是Euler’s Formula 欧拉公式。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值