一、MSE 均方误差
即(真实值-预测值)的平方/测试集个数
其实(真实值-预测值)的平方 就是线性回归的损失函数,线性回归的目的就是为了让损失函数最小化。但这种判断方式是会放大误差的,即本身误差越大的平方后会更大。所以从这也可以看出,损失函数是为了减小最大的那个误差。
二、RMSE 均方根误差
即MSE开根号,使结果的单位和数据集一致,更好描述
三、MAE 平均绝对误差
四、R-Squared
以上3种评价方式,针对不同的模型,有不同的单位。比如米,元。这些不同的单位缺乏可读性。
衡量分类算法通常使用准确率进行衡量,那么衡量回归算法就引入了R-Squared
化简上面公式
分子就变成了我们的均方误差MSE,下面分母就变成了方差。
这里的基准模型即取平均值。分式的分母为方差公式,若R**2<0,即分子大于分母,预测模型误差大于基准模型。
五、实现代码
#这里我们使用sklearn数据集中的波士顿房产数据
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datastes
boston=datasets.load_boston()
x=boston.data[:,5]
y=boston