ReduNet 中的一些原理 及 The Rate-Distortion Function

本文探讨了信息率失真函数在编码率计算中的应用,包括总体空间编码率R(Z,ϵ)和类内空间编码率Rc(Z,ϵ∣Π),并基于随机向量的协方差矩阵和体积概念建立了理论模型。通过分析向量空间的膨胀情况,确定了编码所需比特数的表达式,并证明了类内编码率函数关于分类权重的凹性,为优化提供依据。
摘要由CSDN通过智能技术生成

两种编码率

总体空间的编码率(coding rate):
R ( Z , ϵ ) ≐ 1 2 log ⁡ det ⁡ ( I + d m ϵ 2 Z Z ⊤ ) , R(\boldsymbol{Z}, \epsilon) \doteq \frac{1}{2} \log \operatorname{det}\left(\boldsymbol{I}+\frac{d}{m \epsilon^{2}} \boldsymbol{Z} \boldsymbol{Z}^{\top}\right), R(Z,ϵ)21logdet(I+mϵ2dZZ),
以及类内空间编码率:
R c ( Z , ϵ ∣ Π ) ≐ ∑ j = 1 k tr ⁡ ( Π j ) 2 m log ⁡ det ⁡ ( I + d tr ⁡ ( Π j ) ϵ 2 Z Π j Z ⊤ ) . R^{c}(\boldsymbol{Z}, \epsilon \mid \Pi) \doteq \sum_{j=1}^{k} \frac{\operatorname{tr}\left(\Pi_{j}\right)}{2 m} \log \operatorname{det}\left(\boldsymbol{I}+\frac{d}{\operatorname{tr}\left(\Pi_{j}\right) \epsilon^{2}} \boldsymbol{Z} \Pi_{j} \boldsymbol{Z}^{\top}\right). Rc(Z,ϵΠ)j=1k2mtr(Πj)logdet(I+tr(Πj)ϵ2dZΠjZ).
这两个公式的出发点为信息率失真函数(The Rate-Distortion Function)。


信息率失真函数

我们首先假设一个空间有 m m m个向量 w i w_i wi(这里的所有 W W W对应前面构造中的 Z Z Z),其满足: μ ≐ 1 m ∑ i w i = 0 \mu \doteq \frac{1}{m} \sum_{i} w_{i}=0 μm1iwi=0 ε 2 \varepsilon^{2} ε2为编码每个向量所允许的平方误差,也就是说 w ^ i \hat{w}_i w^i w i {w}_i wi的近似,且满足 E [ ∥ w i − w ^ i ∥ 2 ] ≤ ε 2 \mathbb{E}\left[\left\|w_{i}-\hat{w}_{i}\right\|^{2}\right] \leq \varepsilon^{2} E[wiw^i2]ε2,平均意义下,为每个entry的 w i {w}_i wi所允许的平方误差为 ε 2 / d \varepsilon^{2}/d ε2/d d d d为数据维度),可进行如下建模:

w ^ i = w i + z i , z i ∼ N ( 0 , ε 2 d I ) \hat{w}_{i}=w_{i}+z_{i}, \quad \quad z_{i} \sim \mathcal{N}\left(0, \frac{\varepsilon^{2}}{d} I\right) w^i=wi+zi,ziN(0,dε2I)

向量 w ^ i \hat{w}_{i} w^i的协方差矩阵为:

Σ ^ ≐ E [ 1 m ∑ i = 1 m w ^ i w ^ i T ] = ε 2 d I + 1 m W W T ∈ R d × d \hat{\Sigma} \doteq \mathbb{E}\left[\frac{1}{m} \sum_{i=1}^{m} \hat{w}_{i} \hat{w}_{i}^{T}\right]=\frac{\varepsilon^{2}}{d} I+\frac{1}{m} W W^{T} \in \mathbb{R}^{d \times d} Σ^E[m1i=1mw^iw^iT]=dε2I+m1WWTRd×d

这时候我们想要衡量整个空间的膨胀情况,一个直观的想法就是直接计算所有向量张成空间的体积,而这个体积正比于协方差矩阵行列式的平方根,这个是可以由几何意义看出。

其中, e 1 , e 2 e_1, e_2 e1,e2表示 W ^ \hat{W} W^的奇异向量(正交的); σ 1 , σ 2 \sigma_1, \sigma_2 σ1,σ2表示奇异值,可得 w ^ i \hat{w}_{i} w^i张成空间的体积为(相当于所有的奇异值相乘),而 W ^ \hat{W} W^的奇异值为其协方差阵特征值开根,因此有如下计算公式:

vol ⁡ ( W ^ ) ∝ det ⁡ ( ε 2 d I + 1 m W W T ) \operatorname{vol}(\hat{W}) \propto \sqrt{\operatorname{det}\left(\frac{\varepsilon^{2}}{d} I+\frac{1}{m} W W^{T}\right)} vol(W^)det(dε2I+m1WWT)

同样,每个随机向量 z z z所张成的体积为(可以理解成每个小球的体积):

vol ⁡ ( z ) ∝ det ⁡ ( ε 2 d I ) . \operatorname{vol}(z) \propto \sqrt{\operatorname{det}\left(\frac{\varepsilon^{2}}{d} I\right)} . vol(z)det(dε2I) .

为了对每个向量进行编码,我们可以将所有向量所张成的区域划分为不重叠的小球进行填充。当该区域的体积远大于球体的体积时,我们能塞进该区域的小球总数大约等于:

#  of spheres = vol ⁡ ( W ^ ) / vol ⁡ ( z ) \# \text { of spheres}=\operatorname{vol}(\hat{W}) / \operatorname{vol}(z) # of spheres=vol(W^)/vol(z)

若用二进制数来标记感兴趣区域内的所有小球,所需的比特数为:

R ( W ) ≐ log ⁡ 2 ( #  of spheres ) = log ⁡ 2 ( vol ⁡ ( W ^ ) / vol ⁡ ( z ) ) = 1 2 log ⁡ 2 det ⁡ ( I + d m ε 2 W W T ) , \begin{aligned} R(W) & \doteq \log _{2}(\# \text { of spheres}) \\ &=\log _{2}(\operatorname{vol}(\hat{W}) / \operatorname{vol}(z))=\frac{1}{2} \log _{2} \operatorname{det}\left(I+\frac{d}{m \varepsilon^{2}} W W^{T}\right), \end{aligned} R(W)log2(# of spheres)=log2(vol(W^)/vol(z))=21log2det(I+mε2dWWT),

最后一个等式成立是由于:

det ⁡ ( A ) / det ⁡ ( B ) = det ⁡ ( B − 1 A ) . \operatorname{det}(A) / \operatorname{det}(B)=\operatorname{det}\left(B^{-1} A\right). det(A)/det(B)=det(B1A).

根据基本不等式,几何平均数小于等于算数平均值(也就是乘积可以被求和所控制),因此膨胀空间的大小是有限制的。注意到协方差阵的特征值求和就等于其trace,因此对于有限维空间而言,膨胀这一行为是有上界的。

而针对每一类内的信息率失真函数进行加权求和后,为:
R c ( W , ϵ ∣ Π ) = ∑ j = 1 k tr ⁡ ( Π j ) 2 m log ⁡ det ⁡ ( I + d tr ⁡ ( Π j ) ϵ 2 W Π j W ⊤ ) . R^{c}(W, \epsilon \mid \Pi) = \sum_{j=1}^{k} \frac{\operatorname{tr}\left(\Pi_{j}\right)}{2 m} \log \operatorname{det}\left(\boldsymbol{I}+\frac{d}{\operatorname{tr}\left(\Pi_{j}\right) \epsilon^{2}} W \Pi_{j} W^{\top}\right). Rc(W,ϵΠ)=j=1k2mtr(Πj)logdet(I+tr(Πj)ϵ2dWΠjW).

可以证明,上述函数是关于 Π j \Pi_{j} Πj为凹函数。因此最后优化的时候是对其取负,再结合总体空间的目标函数进行优化。


参考

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值