信息论复习—率失真理论

文章探讨了失真的概念,强调了信息率与失真的关系,并介绍了信息率失真理论,它在数据压缩和通信中的应用。率失真函数描述了在给定失真水平下,最小所需的信息传输速率。此外,文章还通过汉明失真矩阵和传输差错概率的例子,说明了失真在实际通信系统中的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

失真的概念:

信息率与失真的关系:

信息率失真理论:

失真函数矩阵:

平均失真度定义为:

平均失真度与信道转移概率的关系:

率失真函数:

率失真函数的物理意义:

 率失真函数的主要性质:

例:

汉明失真与传输差错概率:

汉明失真矩阵为 :

由汉明失真矩阵,得平均失真度为:

而传输出错的概率:


理论上“消息完全无失真传送”的可实现性

        信道编码定理:无论何种信道,只要H(X)<=信息速率R<=信道容量C总能找到一种编码,使在信道上能以任意小的错误概率和无限接近于C的传输速率来传送信息。反之,若R>C,则传输必失真

实际上“消息完全无失真传送”的不可实现性

要做到无失真信源编码,要求H(X)<R<C;实际的信源常常是连续信源,连续信源的绝对熵无穷大,要无失真传送,则信息率R也需无限大信道容量C也必须为无穷大。而实际信道带宽是有限的,所以信道容量受限制。因此无法满足无失真传输的条件,因此传输质量必然受影响。

实际生活中,人们一般并不要求获得完全无失真的消息,通常只要求近似地再现原始消息,即允许一定的失真存在。

失真的概念:

失真函数的取值通常反映失真产生的代价


信息率与失真的关系:

信源压缩后相比原始信源,误差或失真越大,说明压缩掉的信息量就越多。

      描述失真度大小和信息速率关系的定理称为:保真度准则下的信源编码定理,也叫信息率失真理论。

信息率失真理论的应用

    信息率失真理论是量化、数模转换、频带压缩和数据压缩的理论基础


信息率失真理论:

失真函数矩阵:

与转移概率矩阵对应,可定义相应的失真度矩阵

平均失真度定义为:

平均失真度是从统计意义上来说每个符号失真的平均值。

通信传输系统中,失真通常在信道中产生,平均失真度与信道的关系可由转移概率的函数来描述。

平均失真度与信道转移概率的关系:


率失真函数:

      定义:给定信源和失真函数,要使信源压缩后的平均失真   (D为给定的失真上限),则需找到某种压缩方法,使其经过压缩后可以达到一个允许的最小信息速率,即R(D)。不妨将该压缩过程假设成让信源通过一个有失真的传输信道(满足一定的信道转移概率分布或转移概率密度函数),使在该信道(称为试验信道)上传输的信息速率达到最小,这个最小的信息速率称为信息率失真函数,记作R(D)

率失真函数示意图:

 

率失真函数的物理意义

如果将符号通过信道传输看作某种变换过程,为了以小于等于DC 的失真度恢复信源的输出,平均每个信源符号需要得到的最小信息量

若将率失真函数看作D的函数,显然有如下的关系:

当没有失真时( D=0   ):

当失真达到最大时( D=Dmax   )

率失真函数定义域:

 率失真函数的主要性质:

(1))率失真函数R(D)D的下凸型凸函数。 作为D的函数存在最小值。

(2)率失真函数R(D)D的单调递减函数。允许的失真越大,所需的互信息量越小。   

(3))R(D)D的连续函数。

例:


汉明失真与传输差错概率:

设信源符号的分布特性为:  

明失真矩阵为 

信道转移矩阵为:

由汉明失真矩阵,得平均失真度为:

而传输出错的概率:

失真是由传输出错所致

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vizio<

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值