【TensorFlow系列教程第六章】TensorFlow模型评估

【TensorFlow系列教程第六章】TensorFlow模型评估

在这里插入图片描述

准确率(Accuracy)

在TensorFlow框架下,准确率(Accuracy)是评估模型预测结果时极为常用的一项指标。接下来,本教程将详细介绍如何运用TensorFlow来计算模型的准确率。

准备工作

首先,我们要假定已经成功训练好了一个模型,并且也准备好了用于评估该模型的测试数据。在此基础上,方可开展准确率的计算工作。

计算步骤

  1. 导入必要的库
import tensorflow as tf

通过导入tf库,为后续的操作提供所需的函数和类等资源。

  1. 定义计算图
# 假设模型的预测结果存储在变量pred中,测试标签存储在变量labels中
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(labels, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

在上述代码中,先是定义了correct_prediction变量,其原理是通过比较模型预测出来的类别和实际的类别是否一致,以此来判断预测是否正确。随后,利用tf.reduce_mean函数对正确预测的比例进行计算,进而得到准确率这一指标。

  1. 创建会话并运行计算图
with tf.Session() as sess:
    # 加载模型参数
    saver = tf.train.Saver()
    saver.restore(sess, "model.ckpt")

    # 计算准确率
    test_accuracy = sess
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码简单说

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值