tensorflow计算模型的accuracy,precision,sensitivity,specificity

本文介绍了如何在TensorFlow中利用tf.metrics计算模型的accuracy、precision、sensitivity(即recall)和specificity。通过链接提供的资源,详细解释了每个指标的计算方法,并特别提醒了在计算specificity时需要设置sensitivity参数的注意事项。
摘要由CSDN通过智能技术生成

我们在写论文的时候,会经常看到几个模型判断指标,那这几个指标是如何计算的呢,下面将进行讲解:
幸好TensorFlow有tf.metrics这个内置函数,让我们计算起来方便很多。

  1. 计算accuracy:tf.metrics.accuracy。 有个博文不错,里面例子不错:
    https://blog.csdn.net/lyb3b3b/article/details/83047148

  2. 计算precision和accuracy差不多

  3. 计算sensitivity其实就是计算recall,使用tf.metrics.recall

  4. 这里有坑的是specificity,计算这个要基于sensitivity(反过来也可以),使用的是tf.metrics.specificity_at_sensitivity,这个函数相比上面的,多了个参数sensitivity,参考这里:
    https://www.w3cschool.cn/tensorflow_python/tensorflow_python-h3v12zap.html
    这个参数sensitivity不能用tf.placeholder实现占位,要用大于0小于1的数占位

     y_tra_=tf.placeholder(tf.float32, [None,3])
     y_tra=
在R语言中,可以使用`caret`包中的`confusionMatrix()`函数来计算混淆矩阵和模型的各项指标,包括准确度、精确率、召回率和特异度。具体实现过程如下: ```R # 加载数据集 data <- read.csv("data.csv") train_index <- sample(1:nrow(data), 0.7 * nrow(data)) train_data <- data[train_index, ] test_data <- data[-train_index, ] # 训练xgboost模型 library(xgboost) model <- xgboost(data = as.matrix(train_data[, -ncol(train_data)]), label = train_data$label, nrounds = 100, objective = "binary:logistic") # 对测试集进行预测 test_pred <- predict(model, as.matrix(test_data[, -ncol(test_data)])) test_pred_label <- ifelse(test_pred > 0.5, 1, 0) # 计算混淆矩阵和各项指标 library(caret) conf_mat <- confusionMatrix(test_pred_label, test_data$label, positive = "1") accuracy <- conf_mat$overall["Accuracy"] precision <- conf_mat$positivePredictiveValue recall <- conf_mat$sensitivity specificity <- conf_mat$specificity # 打印结果 print(conf_mat$table) print(paste0("Accuracy: ", accuracy)) print(paste0("Precision: ", precision)) print(paste0("Recall: ", recall)) print(paste0("Specificity: ", specificity)) ``` 需要注意的是,在`confusionMatrix()`函数中,需要设置`positive`参数为1,表示真实标签为1的样本是“正例”。同时,可以通过`conf_mat$overall["Accuracy"]`、`conf_mat$positivePredictiveValue`、`conf_mat$sensitivity`和`conf_mat$specificity`来获取模型的准确度、精确率、召回率和特异度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值