tensorflow计算模型的accuracy,precision,sensitivity,specificity

本文介绍了如何在TensorFlow中利用tf.metrics计算模型的accuracy、precision、sensitivity(即recall)和specificity。通过链接提供的资源,详细解释了每个指标的计算方法,并特别提醒了在计算specificity时需要设置sensitivity参数的注意事项。
摘要由CSDN通过智能技术生成

我们在写论文的时候,会经常看到几个模型判断指标,那这几个指标是如何计算的呢,下面将进行讲解:
幸好TensorFlow有tf.metrics这个内置函数,让我们计算起来方便很多。

  1. 计算accuracy:tf.metrics.accuracy。 有个博文不错,里面例子不错:
    https://blog.csdn.net/lyb3b3b/article/details/83047148

  2. 计算precision和accuracy差不多

  3. 计算sensitivity其实就是计算recall,使用tf.metrics.recall

  4. 这里有坑的是specificity,计算这个要基于sensitivity(反过来也可以),使用的是tf.metrics.specificity_at_sensitivity,这个函数相比上面的,多了个参数sensitivity,参考这里:
    https://www.w3cschool.cn/tensorflow_python/tensorflow_python-h3v12zap.html
    这个参数sensitivity不能用tf.placeholder实现占位,要用大于0小于1的数占位

     y_tra_=tf.placeholder(tf.float32, [None,3])
     y_tra=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>