初始RAG

任务1:初始RAG

1.大模型

大型语言模型(LLMs)已经成为我们生活和工作的一部分,它们以惊人的多功能性和智能化改变了我们与信息的互动方式。然而,尽管它们的能力令人印象深刻,但它们也存在时效性(可能会产生幻觉问题)、准确性、算力效率、隐私保护方面还面临着一些挑战和局限性。

在现实世界的应用中,数据需要不断更新以反映最新的发展,生成的内容必须是透明可追溯的,以便控制成本并保护数据隐私。因此,简单依赖于这些 “黑盒” 模型是不够的,我们需要更精细的解决方案来满足这些复杂的需求。

正是在这样的背景下,检索增强生成技术(Retrieval-Augmented Generation,RAG)应时而生,成为 AI 时代的一大趋势。

RAG 通过在语言模型生成答案之前,先从广泛的文档数据库中检索相关信息,然后利用这些信息来引导生成过程,极大地提升了内容的准确性和相关性。RAG 有效地缓解了幻觉问题,提高了知识更新的速度,并增强了内容生成的可追溯性,使得大型语言模型在实际应用中变得更加实用和可信。RAG 的出现无疑是人工智能研究领域最激动人心的进展之一。

2.RAG

RAG 的概念首次于 2020 年被提出,随后进入高速发展。RAG 技术的演进历程如图所示,相关研究进展可以明确地划分为数个关键阶段。在早期的预训练阶段,研究的焦点集中在如何通过预训练模型注入额外的知识,以此增强语言模型的能力。随着 ChatGPT 的面世,对于运用大型模型进行深层次上下文学习的兴趣激增,这推动了 RAG 技术在研究领域的快速发展。随着 LLMs 的潜力被进一步开发,旨在提升模型的可控性并满足不断演变的需求,RAG 的研究逐渐聚焦于增强推理能力,并且也探索了在微调过程中的各种改进方法。特别是随着 GPT-4 的发布,RAG 技术经历了一次深刻的变革。研究重点开始转移至一种新的融合 RAG 和微调策略的方法,并且持续关注对预训练方法的优化。
在这里插入图片描述
RAG被构建为一个应用于大型语言模型的框架,其目标是通过结合大模型的生成能力和外部知识库的检索机制,提升自然语言处理任务的效果。 RAG并非旨在取代已有的知识库问答(KBQA)系统,而是作为一种补充,利用检索机制强调实时性和准确性,从而弥补大型语言模型固有的局限性。

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/836581b3da8a48e39b714facaf287c3f.png在这里插入图片描述

在 RAG 的技术发展过程中,从技术范式角度,将其总结成如下几个阶段:

朴素(Naive RAG)

前文案例中展示了经典的 RAG 流程,也被称为 Naive RAG。主要包括包括三个基本步骤:

  1. 索引 — 将文档库分割成较短的 Chunk,并通过编码器构建向量索引。
  2. 检索 — 根据问题和 chunks 的相似度检索相关文档片段。
  3. 生成 — 以检索到的上下文为条件,生成问题的回答。

进阶的 RAG(Advanced RAG)

Naive RAG 在检索质量、响应生成质量以及增强过程中存在多个挑战。Advanced RAG 范式随后被提出,并在数据索引、检索前和检索后都进行了额外处理。通过更精细的数据清洗、设计文档结构和添加元数据等方法提升文本的一致性、准确性和检索效率。在检索前阶段则可以使用问题的重写、路由和扩充等方式对齐问题和文档块之间的语义差异。在检索后阶段则可以通过将检索出来的文档库进行重排序避免 “Lost in the Middle ” 现象的发生。或是通过上下文筛选与压缩的方式缩短窗口长度。

模块化 RAG(Modular RAG)

随着 RAG 技术的进一步发展和演变,新的技术突破了传统的 Naive RAG 检索 — 生成框架,基于此我们提出模块化 RAG 的概念。在结构上它更加自由的和灵活,引入了更多的具体功能模块,例如查询搜索引擎、融合多个回答。技术上将检索与微调、强化学习等技术融合。流程上也对 RAG 模块之间进行设计和编排,出现了多种的 RAG 模式。然而,模块化 RAG 并不是突然出现的,三个范式之间是继承与发展的关系。Advanced RAG 是 Modular RAG 的一种特例形式,而 Naive RAG 则是 Advanced RAG 的一种特例。

RAG 范式对比图

3.Langchain

LangChain是一个功能强大的框架,专为开发人员构建端到端的应用程序而设计。其主要目标是简化使用语言模型(LLM)和聊天模型构建支持的应用程序的过程。LangChain提供了一套工具、组件和接口,支持多种用例,包括文档分析和摘要、聊天机器人、代码分析等。这个框架的优势在于为开发人员提供了灵活的抽象和AI优先的工具,帮助将LLM应用程序从原型转化为生产环境。LangChain的工具包括上下文感知、推理应用程序、聊天机器人、文档分析、摘要、代码分析、工作流自动化、自定义搜索等。

LangChain提供了多种特定用例的组件,如个人助理、文档问答、聊天机器人、查询表格数据、与API交互以及提取、评估和汇总等功能。这使得开发人员能够构建定制的语言模型应用,以满足各种不同的需求。

LangChain的主要组件:

Model I/O:管理大语言模型(Models),及其输入(Prompts)和格式化输出(Output Parsers)
Data connection:管理主要用于建设私域知识(库)的向量数据存储(Vector Stores)、内容数据获取(Document Loaders)和转化(Transformers),以及向量数据查询(Retrievers)
Memory:用于存储和获取 对话历史记录 的功能模块
Chains:用于串联 Memory ↔️ Model I/O ↔️ Data Connection,以实现 串行化 的连续对话、推测流程
Agents:基于 Chains 进一步串联工具(Tools),从而将大语言模型的能力和本地、云服务能力结合
Callbacks:提供了一个回调系统,可连接到 LLM 申请的各个阶段,便于进行日志记录、追踪等数据导流

Langchain核心模块架构图:
在这里插入图片描述

4.RAG和FT

除了 RAG,LLMs 主要优化手段还包括了提示工程 (Prompt Engineering)、微调 (Fine-tuning,FT)。他们都有自己独特的特点。根据对外部知识的依赖性和模型调整要求上的不同,各自有适合的场景。
在这里插入图片描述
RAG 就像给模型一本教科书,用于定制的信息检索,非常适合特定的查询。另一方面,FT 就像一个学生随着时间的推移内化知识,更适合模仿特定的结构、风格或格式。FT 可以通过增强基础模型知识、调整输出和教授复杂指令来提高模型的性能和效率。然而,它不那么擅长整合新知识或快速迭代新的用例。RAG 和 FT,并不是相互排斥的,它们可以是互补的,联合使用可能会产生最佳性能。

  • 27
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值