快得飞起----LightGBM 优化策略

LightGBM凭借其内存效率和快速运算超越xgboost,直方图优化减少内存和计算成本,稀疏优化针对非零特征,精度优化通过leaf-wise生长模式提升精度,离散特征优化改善onehot缺陷,而并行优化降低大数据处理的复杂度。直方图算法在内存消耗和计算速度上优于预排序算法,虽牺牲一些训练精度,但在测试集表现接近,且具正则化效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作为近年来kaggle的大杀器,LightGBM以其极低的内存消耗和远超xgboost的运算速度得到了越来越多的关注。作为gbdt优化的集大成者,又有microsoft背书,让我们一起来看一下lgbm到底有何神奇之处。

  1. 直方图优化:将连续特征以直方图形式离散化是特征工程中的惯用思路,而在lgbm中使用直方图更多的是为了节省内存和计算开销。一个显而易见的好处是计算分裂增益的时间复杂度从O(N)下降到O(bins),内存上可以采用更小的类型。另外,对一棵分裂的二叉树来说,两个子节点直方图相加即为父节点直方图。通常构造直方图,需要遍历该叶子上的所有数据,但直方图做差仅需遍历直方图的 k 个桶。利用这个方法,lgbm可以在构造一个叶子的直方图后,可以用非常微小的代价得到它兄弟叶子的直方图。
  2. 稀疏优化:只用非零特征构建直方图
  3. 精度优化:树的生长模式从level-wise变为leaf-wise,这样在相同节点数的情况下lgbm拥有更高的精度。 缺点可能会导致树的深度过大,解决方式是增加最大深度限制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值