【PCL自学:Feature7】基于转动惯量和偏心量的描述符 (持续更新)

11 篇文章 17 订阅
本文详细介绍了如何使用pcl::MomentOfInertiaEstimation类来计算点云的转动惯量和偏心度,这些特征用于描述点云的形状和旋转不变性。通过计算协方差矩阵、特征值和向量,可以获取轴对齐和定向的边界框(AABB和OBB)。示例程序展示了如何提取这些描述符并使用PCLVisualizer进行可视化。此外,文章强调了OBB在逼近物体形状方面的优势。
摘要由CSDN通过智能技术生成

一、基于转动惯量和偏心度的描述符介绍

  在这篇文章中,我们将学习如何使用pcl:: momenttofinertiaestimate类来获得基于转动惯量和偏心度的描述符。这个类还允许提取点云的轴对齐和定向的边界框(不一定是最小边框)。
  
【理论基础】:
  特征提取方法的思想如下:
  首先计算点云的协方差矩阵,提取点云的特征值和向量(可以理解特征向量就是整篇点云的主轴方向,特征值是在特征向量上的伸缩量)。可以认为合成的特征向量是标准化的,总是形成右手坐标系(主特征向量代表x轴,次特征向量代表z轴)。
  然后进行迭代过程。在每次迭代中,主特征向量被旋转。旋转顺序总是相同的,并围绕其他特征向量执行,这提供了点云旋转的不变性。今后,我们将把这个旋转后的主矢量称为当前轴。
在这里插入图片描述
  计算每次当前轴的转动惯量并利用当前轴进行偏心距计算。由于这个原因,当前轴矢量方向被视为平面的法向量,输入的点云可以投影到它上面。然后计算得到的投影的离心率。
在这里插入图片描述
  PCL的momenttofinertiaestimate类还提供了获取AABB和OBB包围盒的方法。定向包围盒计算为沿着特征向量的AABB。

AABB:Axis-Aligned Bounding Box,轴对齐包围盒;
OBB:Oriented Bounding Box,有向包围盒;
OBB比包围球和AABB更加逼近物体,能显著减少包围体的个数
在这里插入图片描述
  如下图所示黄色为AABB,红色为OBB。
在这里插入图片描述

二、基于转动惯量和偏心度的描述符示例程序分析

  开始之前,需要在github上下载示例的点云文件,点击这里可以下载。接下来在VS编辑器中创建一个文件moment_of_inertia.cpp,并在其中复制以下代码。

#include <vector>
#include <thread>
 
#include <pcl/features/moment_of_inertia_estimation.h>
 #include <pcl/io/pcd_io.h>
 #include <pcl/point_types.h>
 #include <pcl/visualization/cloud_viewer.h>
 
 using namespace std::chrono_literals;

int main (int argc, char** argv)
{
  if (argc != 2)
    return (0);

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ());
  if (pcl::io::loadPCDFile (argv[1], *cloud) == -1)
    return (-1);

  pcl::MomentOfInertiaEstimation <pcl::PointXYZ> feature_extractor;
  feature_extractor.setInputCloud (cloud);
  feature_extractor.compute ();

  std::vector <float> moment_of_inertia;// 转动惯量
  std::vector <float> eccentricity;     // 偏心量
  pcl::PointXYZ min_point_AABB;
  pcl::PointXYZ max_point_AABB;
  pcl::PointXYZ min_point_OBB;
  pcl::PointXYZ max_point_OBB;
  pcl::PointXYZ position_OBB;
  Eigen::Matrix3f rotational_matrix_OBB;
  float major_value, middle_value, minor_value;
  Eigen::Vector3f major_vector, middle_vector, minor_vector;
  Eigen::Vector3f mass_center;

  feature_extractor.getMomentOfInertia (moment_of_inertia);
  feature_extractor.getEccentricity (eccentricity);
  feature_extractor.getAABB (min_point_AABB, max_point_AABB);
  feature_extractor.getOBB (min_point_OBB, max_point_OBB, position_OBB, rotational_matrix_OBB);
  feature_extractor.getEigenValues (major_value, middle_value, minor_value);
  feature_extractor.getEigenVectors (major_vector, middle_vector, minor_vector);
  feature_extractor.getMassCenter (mass_center);

  pcl::visualization::PCLVisualizer::Ptr viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));
  viewer->setBackgroundColor (0, 0, 0);
  viewer->addCoordinateSystem (1.0);
  viewer->initCameraParameters ();
  viewer->addPointCloud<pcl::PointXYZ> (cloud, "sample cloud");
  viewer->addCube (min_point_AABB.x, max_point_AABB.x, min_point_AABB.y, max_point_AABB.y, min_point_AABB.z, max_point_AABB.z, 1.0, 1.0, 0.0, "AABB");
  viewer->setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION, pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "AABB");

  Eigen::Vector3f position (position_OBB.x, position_OBB.y, position_OBB.z);
  Eigen::Quaternionf quat (rotational_matrix_OBB);
  viewer->addCube (position, quat, max_point_OBB.x - min_point_OBB.x, max_point_OBB.y - min_point_OBB.y, max_point_OBB.z - min_point_OBB.z, "OBB");
  viewer->setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION, pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "OBB");

  pcl::PointXYZ center (mass_center (0), mass_center (1), mass_center (2));
  pcl::PointXYZ x_axis (major_vector (0) + mass_center (0), major_vector (1) + mass_center (1), major_vector (2) + mass_center (2));
  pcl::PointXYZ y_axis (middle_vector (0) + mass_center (0), middle_vector (1) + mass_center (1), middle_vector (2) + mass_center (2));
  pcl::PointXYZ z_axis (minor_vector (0) + mass_center (0), minor_vector (1) + mass_center (1), minor_vector (2) + mass_center (2));
  viewer->addLine (center, x_axis, 1.0f, 0.0f, 0.0f, "major eigen vector");
  viewer->addLine (center, y_axis, 0.0f, 1.0f, 0.0f, "middle eigen vector");
  viewer->addLine (center, z_axis, 0.0f, 0.0f, 1.0f, "minor eigen vector");

  while(!viewer->wasStopped())
  {
    viewer->spinOnce (100);
    std::this_thread::sleep_for(100ms);
  }

  return (0);
}

【代码分析】:
  现在让我们研究一下这段代码的目的是什么。前几行将被省略,因为它们很容易理解。

以下语句声明所有需要存储的描述符和边界框的相关变量。

  std::vector <float> moment_of_inertia; // 转动惯量
  std::vector <float> eccentricity;      // 离心率
  pcl::PointXYZ min_point_AABB;          //AABB盒子最小点位置
  pcl::PointXYZ max_point_AABB;          //AABB盒子最大点未位置
  pcl::PointXYZ min_point_OBB;			 //OBB盒子最小点未位置
  pcl::PointXYZ max_point_OBB;  		 //OBB盒子最大点未位置
  pcl::PointXYZ position_OBB;            //OBB盒子中心位置
  Eigen::Matrix3f rotational_matrix_OBB; //OBB盒子旋转矩阵
  float major_value, middle_value, minor_value;
  Eigen::Vector3f major_vector, middle_vector, minor_vector;
  Eigen::Vector3f mass_center;           //块中心
 

以下语句说明了如何获取描述符的计算结果

 feature_extractor.getMomentOfInertia (moment_of_inertia);
  feature_extractor.getEccentricity (eccentricity);
  feature_extractor.getAABB (min_point_AABB, max_point_AABB);
  feature_extractor.getOBB (min_point_OBB, max_point_OBB, position_OBB, rotational_matrix_OBB);
  feature_extractor.getEigenValues (major_value, middle_value, minor_value);
  feature_extractor.getEigenVectors (major_vector, middle_vector, minor_vector);
  feature_extractor.getMassCenter (mass_center);

以下语句使用PCLVisualizer类将结果进行了可视化,使用线框显示立方体(默认使用实体立方体,这里用线框显示更清晰)。

OBB的可视化稍微复杂一点。首先从旋转矩阵创建一个四元数,设置obb的位置,并将其传递给可视化器。

  pcl::PointXYZ center (mass_center (0), mass_center (1), mass_center (2));
  pcl::PointXYZ x_axis (major_vector (0) + mass_center (0), major_vector (1) + mass_center (1), major_vector (2) + mass_center (2));
  pcl::PointXYZ y_axis (middle_vector (0) + mass_center (0), middle_vector (1) + mass_center (1), middle_vector (2) + mass_center (2));
  pcl::PointXYZ z_axis (minor_vector (0) + mass_center (0), minor_vector (1) + mass_center (1), minor_vector (2) + mass_center (2));
  viewer->addLine (center, x_axis, 1.0f, 0.0f, 0.0f, "major eigen vector");
  viewer->addLine (center, y_axis, 0.0f, 1.0f, 0.0f, "middle eigen vector");
  viewer->addLine (center, z_axis, 0.0f, 0.0f, 1.0f, "minor eigen vector");

总结:
  这篇文章主要介绍了基于转动惯量和偏心量的描述符,并分析了示例程序以学习如何使用该类,我们所要掌握的内容是,当需要对点云画出边界盒时,可以采用这种方式。下篇文章将会介绍RoPs旋转投影特征


【博主简介】
  斯坦福的兔子,男,天津大学机械工程工学硕士。毕业至今从事光学三维成像及点云处理相关工作。因工作中使用的三维处理库为公司内部库,不具有普遍适用性,遂自学开源PCL库及其相关数学知识以备使用。谨此将自学过程与君共享。
博主才疏学浅,尚不具有指导能力,如有问题还请各位在评论处留言供大家共同讨论。
若前辈们有工作机会介绍欢迎私信。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值