- 博客(24)
- 收藏
- 关注
原创 Open3D 点云分割基础案例
超过错误阈值的元素认为是离群值(outlier),小于错误阈值的元素认为是内部点(inlier)。从输入数据中随机选出能组成数学模型的最小数目的元素,使用这些元素计算出相应模型的参数。选出的这些元素数目是能决定模型参数的最少的。3、如果处在同一个平面的点超过n个,就保存下这个平面,并将处在这个平面上的点都标记为已匹配。3、计算所有其他点到该平面的距离,如果小于阈值T,就认为是处在同一个平面的点。4、终止的条件是迭代N次后找到的平面小于n个点,或者找不到三个未标记的点。参数:距离d,随机次数n,拟合模型。
2023-11-22 09:44:33 2006 2
原创 python中open3D的点云处理
Open3D是一个开源库,支持快速开发处理3D数据的软件。Open3D后端是用C++实现的,经过高度优化并通过Python的前端接口公开。Open3D提供了三种数据结构: 点云 (point cloud)、网格(mesh)和RGB-D图像。对于每个表示,open3D都实现了一整套基本处理算法,如I/O、采样、可视化和数据转换。此外,还包括一些常用的算法,如法线估计、ICP 配准等。
2023-11-28 08:54:00 244
原创 Open3D计算点云距离
从输入数据中随机选出能组成数学模型的最小数目的元素,使用这些元素计算出相应模型的参数。选出的这些元素数目是能决定模型参数的最少的。Open3D中的compute_point_cloud_distance函数计算从源点云中每个点到目标点云中最近邻点的距离。3、如果处在同一个平面的点超过n个,就保存下这个平面,并将处在这个平面上的点都标记为已匹配。3、计算所有其他点到该平面的距离,如果小于阈值T,就认为是处在同一个平面的点。4、终止的条件是迭代N次后找到的平面小于n个点,或者找不到三个未标记的点。
2023-11-27 09:03:08 590
原创 open3d--索引滤波
所谓的索引滤波压根就不是滤波,只是根据索引,将点选出而已,总共有两种选取方法,一是选取索引对应的点;二是选取索引之外的点。这两中滤波方法都是先得到符合要求的点索引,然后通过索引滤波,将这些点挑选出来,输出输出为滤波后的点云和点的索引号。pcd = pcd.uniform_down_sample(50)#每隔50个点采样一次。.均匀采样(Uniform Sample)等间隔保留点,如每隔50个点索引保留一个。RANSAC分割平面。
2023-11-25 10:24:09 171
原创 点云格式互转——txt格式点云转换为pcd格式点云
以上是将txt格式点云转换为pcd格式点云的基本步骤,需要注意的是,转换过程中需要保证点云数据的格式正确,例如点云的坐标顺序和格式等。使用PCL库中的pcl::io::savePCDFileBinary()函数将点云保存为pcd格式的文件。将txt格式的点云转换为pcd格式的点云可以使用PCL库中的IO模块中的函数。将读取到的点云数据转换为PCL库中点云格式的数据,例如pcl::PointXYZ等。
2023-11-23 15:55:39 376
原创 Geomagic Studio 12模型管理器怎么显示出来
Geomagic Studio 12模型管理器怎么显示出来。兄弟,解决了赞一个呗!
2023-11-23 15:52:00 600 1
原创 点云配准续: 代码函数解读
不过卷积过程导致的图像变小是为了提取特征,而池化下采样是为了降低特征的维度。二是增大感受野,使得后面的卷积核能够学到更加全局的信息。体素降采样使用常规体素网格从输入点云创建均匀的缩减采样点云。#输入是两个点云和一个初始转换,该转换将源点云和目标点云大致对齐,输出是精确的变换,使两点云紧密对齐。下采样实际上就是缩小图像,主要目的是为了使得图像符合显示区域的大小,生成对应图像的缩略图。#目标点云和源点云分别用青色和黄色绘制。#将目标点云和源点云可视化,并通过对齐变换对其进行转换。1.点被收集到体素中。
2023-11-23 09:33:19 264
原创 open3D点云配准
点云配准过程,就是求一个两个点云之间的旋转平移矩阵,将源点云(source cloud)变换到目标点云(target cloud)相同的坐标系下。的全部信息,因此,我们需要进行多视角的扫描点云数据,在数据处理中需要将。各片点云数据纳入到一个统一的坐标系中再进行后续的应用。由于设备和空间的限制,我们往往不能一次性完整的获得扫描的场景或者物体。基于点特征的的配准 ICP、Color ICP、Trimed-ICP。一到一个世界坐标系的过程称之为点云配准或者点云拼接。
2023-11-22 09:15:51 498 1
原创 Open3D点云配准
点云配准过程,就是求一个两个点云之间的旋转平移矩阵,将源点云(source cloud)变换到目标点云(target cloud)相同的坐标系下。的全部信息,因此,我们需要进行多视角的扫描点云数据,在数据处理中需要将。各片点云数据纳入到一个统一的坐标系中再进行后续的应用。由于设备和空间的限制,我们往往不能一次性完整的获得扫描的场景或者物体。基于点特征的的配准 ICP、Color ICP、Trimed-ICP。一到一个世界坐标系的过程称之为点云配准或者点云拼接。
2023-11-22 09:04:55 436 1
原创 open3D点云聚类
边界点:半径R内的点个数小于给定阈值minPts,但它在核心点R邻域内。基于密度的聚类算法,根据点周围的密度,将点进行聚类划分。核心点:半径R内的点个数大于给定minPts的点。对旋转、尺度等具有独特性和不变性的点或特征。噪声点:既不是核心点,也不是边界点。三个调整法向方法的函数。
2023-11-21 09:16:38 155 1
原创 Open3D 点云分割与聚类
它是根据一组包含异常数据的样本数据集,计算出数据的数学模型参数,得到有效样本数据的算法。2、计算inlier数量,Inlier判定方式:计算所有点与随机点计算的平面之间的距离d,如果d
2023-11-20 09:19:54 160 2
原创 open3D表面重建
想象一下, 一个给定半径大小的球体,朝点云扔去,如果球体击中任意三个点,且没有重中穿过,则该三个点创建一个triangles mesh;然后该算法以现有的这个triangles mesh的边沿开始进行周围的迭代,当击中另外三个点没有穿过时,创建另一个三角形。由于这个原因,泊松曲面重构可能比上面提到的方法更可取,因为它们会产生非光滑的结果,因为点云的点也是没有任何修改的三角形网格的顶点。该算法的实现基于点云的凸包。该方法接受一个半径列表radii作为参数,该参数对应于在点云上旋转的各个球的半径。
2023-11-18 09:02:03 419 1
原创 open3D体素化
Open3d中从三角网构建体素:Open3D 提供了从三角形网格创建体素网格的方法create_from_triangle_mesh。voxel_size为体素的尺寸大小,体素的尺寸越大,下采样的倍数越大,点云也就越稀疏。将物体的几何形式表示转换成最接近该物体的体素表示形式,产生体数据,包含模型的表面信息和内部属性。表示3D模型的体素跟表示2D图像的像素相似,只不过从二维的点扩展到三维的立方体单元。输入的每个体素都VoxelGrid被视为 3D 空间中的 一个点,其坐标对应于体素的原点。
2023-11-18 09:01:24 755
原创 Open3D 常见点云处理方法
1.引导滤波 Guilter Filter:主要作用是消除或减少噪声,同时保留对目标有用的关键信息。引导滤波器通常会利用一部分已经分类或者标记的点云数据(通常被称为“引导点”或“引导数据”)来指导滤波过程,通过优化这些引导点的分布来达到滤波的效果。这种方法可以有效地减少滤波过程中的噪声,同时保留对目标有用的关键信息。点云切片:将某个剖面的所有点取出来对于切分后的点云进行进一步分析。Open3D 常见点云处理方法。
2023-11-17 09:19:47 247
原创 DBSCAN 聚类分析算法
如果一个点位于一个聚类的密集区域里, 它的E-邻域里的点也属于该聚类, 当这些新的点被加进聚类后, 如果它(们)也在密集区域里, 它(们)的e邻域里的点也会被加进聚类里。DBSCAN对资料库里的每一点进行访问,可能多于一次(例如作为不同聚类的候选者),但在现实的考虑中,时间复杂度主要受regionQuery的调用次数影响,DBSCAN对每点都进行刚好一次调用,且如果使用了特别的编号结构,则总平均时间复杂度为O(n log n) ,最差时间复杂度则为O(n/\ 2)。
2023-11-16 10:49:08 141
原创 Open3D 点云分割与聚类
它是根据一组包含异常数据的样本数据集,计算出数据的数学模型参数,得到有效样本数据的算法。这里的坐标以tuple的形式给出,通常原数组有多少维,输出的tuple中就包含几个数组,分别对应符合条件元素的各维坐标。返回值:plane_model:平面模型,即个平面方程系数(a,b,c,d),作为一个平面,对于平面上每个点(x,y,z),我们有ax+by+cz+d=0。2、计算inlier数量,Inlier判定方式:计算所有点与随机点计算的平面之间的距离d,如果d
2023-11-16 10:27:03 389
原创 Open3D 分割点云案例
*DBSCAN算法可以对任意形状的稠密数据集进行聚类,相对于K-Means、Mean Shift之类的聚类算法一般只适用于凸数据集。除此之外该算法在聚类的同时发现异常点,对数据集中的异常点不敏感。DBSCAN算法也存着缺点,如果样本集的密度不均匀、聚类间距差相差很大时,聚类质量比较差;样本集较大时,聚类收敛时间较长;以及对Eps和MinPts的联合调参是比较困难的。在日常生活中,我们可以根据数据的类型进行合理选择该算法进行聚类分类。
2023-11-16 09:53:16 1289 2
原创 Open3D 常见点云处理方法2
1.引导滤波 Guilter Filter:主要作用是消除或减少噪声,同时保留对目标有用的关键信息。引导滤波器通常会利用一部分已经分类或者标记的点云数据(通常被称为“引导点”或“引导数据”)来指导滤波过程,通过优化这些引导点的分布来达到滤波的效果。这种方法可以有效地减少滤波过程中的噪声,同时保留对目标有用的关键信息。点云切片:将某个剖面的所有点取出来对于切分后的点云进行进一步分析。
2023-11-15 14:34:47 165
原创 Open3D 常见点云处理方法
引导滤波器通常会利用一部分已经分类或者标记的点云数据(通常被称为“引导点”或“引导数据”)来指导滤波过程,通过优化这些引导点的分布来达到滤波的效果。首先计算每一点的曲率值,根据点云的曲率的值 从大到小按照一定的比例保留采样点。17. 减少噪声:引导滤波器通过利用一部分已知的、可靠的点云数据来指导滤波过程,可以有效地减少噪声的影响,提高点云的精度和准确性。在局部区域内,根据法线的方向,采样保留点法线方向较为分散的点,这样可以有效的保留点 云的特征细节。点云噪声特性:不真实的点、孤立点、不规则。
2023-11-15 14:31:49 583
原创 open3D-三维数据的结构
Kdtree是一种划分k维数据空间的数据结构,在一个K维数据集合上构建一棵Kdtree代表了对该K维数据集合构成的K维空间的一个划分,即树中的每个结点就对应了一个K维的超矩形区域。八叉树的每个节点表示一个正方体的体积元素,每个节点有八个子节点,将八个子节点所表示的体积元素加在一起就等于父节点的体积。我的理解:A是要查找的点,黑色点相当是数据库中的点,图中是找离A色点最近的2个点,显示出来就是图中的红色点。练习:计算点云的平均距离遍历点云,计算最近点的距离并累加平均和。2.点云之中点的平均距离。
2023-11-15 14:25:35 229
原创 02-open3D点云可视化
旋转矩阵(最终都以此进行):用九个数来表示三个自由度,矩阵中的每一列表示旋转后的单位向量方向,缺点是有冗余性,不紧凑。欧拉角:将旋转分解为三个分离的转角,常用在飞行器上,但因为万向锁问题(Gimbal Lock) 而同样具有奇异性。在open3d中,针对三维对象的变换主要有translate、rotate、scale和transform。旋转向量:用一个旋转轴和一个旋转角来表示旋转,但是因为周期性,任何2nπ的旋转等价于没有旋转,具有奇异性。三维变换主要包括:平移、旋转、缩放。• Rotate 旋转。
2023-11-15 11:54:35 141
原创 01 三维数据表达
三维数据类型:点云:某个坐标系下的点数据集,每个点包括三维坐标X,Y,Z、颜色、分类值、强度值、时间等信息。储存格式:pts、LAS、PCD、xyz、asc、ply等Mesh:多边形网格,常见的是三角网格,由点,法向,面组成。储存格式:obj、stl、ply等数模:三维数字模型是通过三维制作软件通过虚拟三维空间构建出具有三维数据的模型,由几何基元构成。
2023-11-15 11:44:09 124
原创 初学---open 3D点云
CGAL: 计算几何算法库(CGAL),提供计算几何相关的数据结构和算法,诸如三角剖分(2D约束三角剖分及二维和三维Delaunay三角剖分),Voronoi图(二维和三维的点,2D加权Voronoi图,分割Voronoi图等),多边形(布尔操作,偏置),多面体(布尔运算),曲线整理及其应用,网格生成(二维Delaunay网格生成和三维表面和体积网格生成等),几何处理(表面网格简化,细分和参数化等),凸壳算法(2D,3D和dD),搜索结构(近邻搜索,kd树等),插值,形状分析,拟合,距离等。
2023-11-15 11:32:44 468
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人