如何查看GPU的计算能力?

本文介绍了GPU计算能力是其固有属性,与CUDA版本无关,可通过英伟达官网或CUDA程序获取。列举了常见GPU如RTX3090、RTX2080Ti等的计算能力,并提供了检查本地GPU计算能力的CUDA C++代码示例。
摘要由CSDN通过智能技术生成

一、计算能力是GPU的固有属性

  GPU的计算能力是不同型号的GPU的固有属性,和cuda版本无关。
  想要知道GPU计算能力只需要点击英伟达官网的链接【各种型号GPU计算能力】
  当然如果列表中没有自己的显卡型号,也可以在程序当中获取当前计算机的GPU的计算能力。使用如下代码进行查看。

int	iGpuCount = 0;
cudaGetDeviceCount(&iGpuCount);
if(iGpuCount < 1)
{
	std::cout << "未找到显卡"<< std::endl;
}
else
{
	cudaDeviceProp kCudaProp;
	for(int i = 0; i<iGpuCount ;i++)
	{	cudaGetDeviceProperties(&kCudaProp, i); 
		std::cout << "显卡算力:" << kCudaProp.major<<"."<< kCudaProp.minor << std::endl;
	}
}

二、常见的GPU计算能力

  以下列举常见的GPU计算能力(GeForce和TITAN系列)

GPU计算能力
GeForce RTX 30908.6
GeForce RTX 30808.6
GeForce RTX 30708.6
NVIDIA TITAN RTX7.5
GeForce RTX 2080 Ti7.5
GeForce RTX 20807.5
GeForce RTX 20707.5
GeForce RTX 20607.5
NVIDIA TITAN V7.0
NVIDIA TITAN Xp6.1
NVIDIA TITAN X6.1
GeForce GTX 1080 Ti6.1
GeForce GTX 10806.1
GeForce GTX 10706.1
GeForce GTX 10606.1
GeForce GTX 10506.1
GeForce GTX TITAN X5.2
GeForce GTX TITAN Z3.5
GeForce GTX TITAN Black3.5
GeForce GTX TITAN3.5
GeForce GTX 980 Ti5.2
GeForce GTX 9805.2
GeForce GTX 9705.2
GeForce GTX 9605.2
GeForce GTX 9505.2
GeForce GTX 780 Ti3.5
GeForce GTX 7803.5
GeForce GTX 7703.0
GeForce GTX 7603.0
GeForce GTX 750 Ti5.0
GeForce GTX 7505.0
GeForce GTX 6903.0
GeForce GTX 6803.0
GeForce GTX 6703.0
GeForce GTX 660 Ti3.0
GeForce GTX 6603.0
GeForce GTX 650 Ti BOOST3.0
GeForce GTX 650 Ti3.0
GeForce GTX 6503.0
GeForce GTX 560 Ti2.1
GeForce GTX 550 Ti2.1
GeForce GTX 4602.1
GeForce GTS 4502.1
GeForce GTS 450*2.1
GeForce GTX 5902.0
GeForce GTX 5802.0
GeForce GTX 5702.0
GeForce GTX 4802.0
GeForce GTX 4702.0
GeForce GTX 4652.0
GeForce GT 7403.0
GeForce GT 7303.5
GeForce GT 730 DDR3,128 位2.1
GeForce GT 7203.5
GeForce GT 705*3.5
GeForce GT 640 (GDDR5)3.5
GeForce GT 640 (GDDR3)2.1
GeForce GT 6302.1
GeForce GT 6202.1
GeForce GT 6102.1
GeForce GT 5202.1
GeForce GT 4402.1
GeForce GT 440*2.1
GeForce GT 4302.1
GeForce GT 430*2.1
在进行高性能计时,Linpack基准测试是一个关键指标,尤其是通过CUDA编程模型来利用GPU的强大并行计算能力。为了优化Linpack基准测试并提高GPU的计性能,首先需要对CUDA编程模型有一个清晰的理解。CUDA提供了一个可扩展的线程层次结构,包括线程、线程块和网格,使得编程者可以将计任务映射到GPU的成千上万个核心上。 参考资源链接:[CUDA加速GPU Linpack测试:工作站与异构集群](https://wenku.csdn.net/doc/61bvamoo7b?spm=1055.2569.3001.10343) 优化的第一步是编写高效的并行法。在解决线性系统时,特别是使用CUBLAS库中的DGEMM(双精度矩阵乘法)函数,可以大大提升性能。DGEMM是构建高效线性代数解决方案的关键组件,它利用GPU的并行性来加速大规模矩阵运。 其次,内存访问模式是性能优化的关键。通过减少全局内存访问,优化共享内存和常量内存的使用,可以显著提升性能。此外,CUDA中的异步内存传输和计可以进一步隐藏数据传输的延迟,从而提高整体吞吐量。 第三,针对不同的问题规模和硬件配置,合理选择问题分解策略。在异构集群环境中,需要考虑到节点间的通信开销,选择适当的分块大小和数据分布策略来平衡计负载,确保各节点和GPU之间的负载均衡。 最后,利用NVIDIA提供的性能分析工具,如nvprof和nsight,对CUDA代码进行性能分析和调优。这些工具可以帮助开发者识别瓶颈,比如内存带宽限制、计效率低下的代码区域,或者是GPU资源的不充分使用。 总之,通过深入理解CUDA编程模型,结合高效的并行法设计,优化内存访问模式,并采用合适的负载分解策略,以及使用性能分析工具进行调优,可以显著提升GPU上Linpack基准测试的性能。这本《CUDA加速GPU Linpack测试:工作站与异构集群》的说明文档,将为对如何在实际硬件环境中实现这些优化感兴趣的研究人员和工程师提供宝贵的指导。 参考资源链接:[CUDA加速GPU Linpack测试:工作站与异构集群](https://wenku.csdn.net/doc/61bvamoo7b?spm=1055.2569.3001.10343)
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值