算法
文章平均质量分 93
斯坦福的兔子
工学硕士
展开
-
【PCL自学:Recognition 1】基于对应分组算法的三维物体识别
PCL Recognition模块:基于对应分组的三维物体识别一、初识Recognition点云识别模块二、基于对应分组算法识别的实例代码及分析三、一、初识Recognition点云识别模块 本章节旨在解释如何基于pcl_recognition模块执行3D对象识别。pcl_segmentation库包含了将点云分割成不同簇的算法。这些算法最适合处理由许多在空间上相互隔离的区域内的点云。在这种情况下,通常使用集群将点云分解为其组成部分,然后可以独立处理这些部分。有关该模块包含的所有类和方法的解释可以参考原创 2022-02-27 17:43:18 · 3424 阅读 · 11 评论 -
【PCL自学:Range Images】深度图与点云数据的转换及其应用(持续更新)
PCL 深度图一、什么是深度图二、点云转深度图 PointCloud->Range Image三、利用深度提提取点云边缘一、什么是深度图 目前深度图像的获取方法有激光雷达深度成像法、计算机立体视觉成像、坐标测量机法、莫尔条纹法、结构光法等等,针对深度图像的研究重点主要集中在以下几个方面,深度图像的分割技术 ,深度图像的边缘检测技术 ,基于不同视点的多幅深度图像的配准技术,基于深度数据的三维重建技术,基于三维深度图像的三维目标识别技术,深度图像的多分辨率建模和几何压缩技术等等,在PCL 中深度图像原创 2022-02-26 22:05:44 · 9322 阅读 · 5 评论 -
【PCL自学:Filtering】PCL中的各类滤波器介绍与使用 (持续更新)
PCL_filter模块中各类滤波器目录一、直通滤波器(PassThrough):用于阈值滤除1、直通滤波器介绍2、示例代码二、体素滤波器(VoxelGrid filter):用于下采样1、体素滤波器介绍2、示例代码三、统计离群滤波器(StatisticalOutlierRemoval filter):用于离群点滤除1、统计离群滤波器介绍2、示例代码四、条件滤波器(Conditional or RadiusOutlier ):用于离群点滤除1、条件滤波器介绍2、示例代码一、直通滤波器(PassThroug原创 2022-02-15 01:02:49 · 6685 阅读 · 0 评论 -
【PCL自学:Feature9】全局对齐空间分布(GASD)描述符 (持续更新)
一、全局对齐空间分布(GASD)描述符介绍 此篇文章描述了全局对齐空间分布([GASD])全局描述符,用于有效的对象识别和姿态估计。 GASD基于表示对象实例的整个点云参考框架的估计,该参考框架用于将其与规范坐标系对齐。然后,根据其三维点的空间分布,为对齐的点云计算描述符。这样的描述符也可以扩展到整个对齐点云的颜色分布。利用匹配点云的全局对齐变换来计算目标的姿态。更多信息参见此篇论文【理论基础:】...原创 2022-02-13 21:35:50 · 1211 阅读 · 1 评论 -
【PCL自学:Feature8】RoPs(旋转投影统计)特征识别物体简介和使用 (持续更新)
一、RoPs(旋转投影统计)特征原理介绍 在文章中,我们继续学习如何使用pcl:: ropsestimate类来提取点的特征。在这类中实现的特征提取方法是由Yulan Guo, Ferdous Sohel, Mohammed Bennamoun, Min Lu和Jianwei wane在他们的文章 “Rotational Projection Statistics for 3D Local Surface Description and Object Recognition”中提出的。 在噪声、网格原创 2022-02-11 10:58:29 · 3175 阅读 · 4 评论 -
【PCL自学:Feature7】基于转动惯量和偏心量的描述符 (持续更新)
一、基于转动惯量和偏心度的描述符介绍 在这篇文章中,我们将学习如何使用pcl:: momenttofinertiaestimate类来获得基于转动惯量和偏心度的描述符。这个类还允许提取点云的轴对齐和定向的边界框(不一定是最小边框)。 【理论基础】: 特征提取方法的思想如下: 首先计算点云的协方差矩阵,提取点云的特征值和向量(可以理解特征向量就是整篇点云的主轴方向,特征值是在特征向量上的伸缩量)。可以认为合成的特征向量是标准化的,总是形成右手坐标系(主特征向量代表x轴,次特征向量代表z轴)。原创 2022-02-10 01:08:03 · 722 阅读 · 0 评论 -
【PCL自学:Feature6】从深度图像中提取NARF描述符 (持续更新)
一、如何从范围图像中提取NARF关键点 这篇博文简单介绍什么是NARF,并使用官网代码演示了如何从深度图像的NARF关键点位置提取NARF描述符,官方原版链接点击这里。1.NARF(法线对齐的径向特征)简要介绍 NARF 全称 normal aligned radial feature(法线对齐的径向特征) 。是一种3D关键点检测的描述子,常用于物体匹配的关键点特征计算。可以类比于二维图像关键点检测算法 SIFT (Scale Invariant Feature Transform)和 SURF原创 2022-02-08 21:57:34 · 3024 阅读 · 1 评论 -
【PCL自学:Feature5】视点特征直方图VFH概念及使用 (持续更新)
一、视点特征直方图(VFH)原理 这篇博文描述了视点特征直方图(Viewpoint Feature Histogram[VFH])描述符,在一些其他文章也称为视角特征直方图,这是一种用于聚类识别和6DOF姿态估计问题(六自由度姿态估计)的点聚类的描述符。1.理论基础: 视点特征直方图(或VFH)起源于FPFH描述符(参见快速点特征直方图(FPFH)描述符)。FPFH有很好的速度和辨别能力,在此基础上添加视点方差,同时保持尺度不变性。 VFH对目标识别和位姿识别问题的主要贡献是将FPFH扩展到整原创 2022-02-07 22:30:22 · 4843 阅读 · 1 评论 -
【PCL自学:Feature4】快速点特征直方图FPFH概念及使用 (持续更新)
一、快速点特征直方图(FPFH)描述子介绍 对于具有n个点的给定点云P,点特征直方图(PFH)的理论计算复杂度为O(nk2nk^2nk2),其中k为P中的每个点P的邻点数。但是对于有效率要求或点数量极大的情况,例如稠密点特征计算,PFH的计算复杂度将难以满足要求。有关PFH的内容查看上一篇文章。 为解决PFH的计算复杂度问题,前辈们将PFH公式进行了简化,形成了快速点特征直方图(FPFH),它将算法的计算复杂度降低到O(nk)级别,同时仍然保留PFH的大部分能力。1、快速点特征直方图原理简述原创 2022-02-06 16:20:51 · 5245 阅读 · 1 评论 -
【PCL自学:Feature3】PFH点特征直方图的概念和使用 (持续更新)
一、点特征直方图(PFH)描述子介绍 Point Feature Histograms (PFH) 称为点特征直方图。 随着点特征的研究不断深入,利用点周围的邻近点估计表面法向和曲率的基本操作逐渐被点特征直方图取代,虽然表面法向和曲率的估计速度很快,但是他们缺失了很多细节,因为它们仅用很少的值近似一个点的k-邻域的几何形状。但是大多数场景将包含许多具有相同或非常相似特征值的点,从而使它们的信息特征不具有唯一性。 本文介绍了一组3D特征描述符PFH(点特征直方图),介绍了它们的理论优势,并从PCL原创 2022-02-05 21:55:34 · 5394 阅读 · 3 评论 -
【PCL自学:Feature2】主成分分析及积分图点云法向估计方法 (持续更新)
PCL点云表面法向估计 在上一章中我们介绍了点云特征估计表示和示例程序,在这一章节中我们将介绍如何使用PCL对表面上的点云进行法向特征估计。 表面法线是几何表面的重要属性,在计算机图形学应用等许多领域中被大量使用,常应用于光源阴影等视觉效果,在工业领域常用来进行物体表面分割的预处理。 任意给定一个几何面,通常很容易推断出面上某一点的法线方向是垂直于该面。但是,由于我们获取的点云数据集代表了真实表面上的一组点样本,因此存在两种可能性: ①利用表面网格技术,从采集的点云数据集中获取表面,并从网格原创 2022-02-05 20:10:18 · 4153 阅读 · 1 评论