论文笔记:Domain-Adaptive Pedestrian Detection in Thermal Images

该博客探讨了一种解决红外图像行人检测问题的方法,通过结合图像转换器和域自适应模块,利用彩色图像的丰富标注数据来增强红外图像的训练。作者提出了一种对抗性数据适应策略,包括两个图像生成器,用于在彩色和红外域之间转换,并引入循环一致性约束。此外,还定义了一种检测损失函数以辅助训练红外行人检测器。训练策略包括两阶段和联合训练两种方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:https://ieeexplore.ieee.org/document/8803104

源码地址:尚未开源


1 Key Idea

红外图像的标注很少,想要将大量带有bbox标注的彩色图像适应到红外域,以训练行人检测器。为了达到这个目的,将含有一对图像转换器的域自适应模块和红外域的行人检测器结合起来,并端到端地训练网络。图像转换器可以看成是一种数据增强的工具。为了辅助训练,作者介绍了一种在真实红外图像和合成红外图像之间定义的检测损失函数。

当前的问题是目标域内的bbox标注数量有限,DA机制用到了源域和目标域中无标注的数据,还不需要图像对进行空间校准。作者学习一对图像转换器,让图像在两种模态之间转换,还有一个行人检测器。图像转换器=数据增强+DA(渐进地修正合成出来的样本)

2 TRAINING PEDESTRIAN DETECTIOR IN THERMAL IMAGES DOMAIN

2.1 High-Level Overview

有一些用来训练的带标签的红外图像,还有一些没有标注的红外图像。本文的目标是训练一个红外图像域内的行人检测器,将一幅崭新的(无标注的?)红外图像映射为一组行人bbox。假设有很多的带标注的彩色图像。令分别为所有彩色和红外图像的集合(无论有没有标注)。

2.2 Adversarial Data Adaptation

图像自适应部分有一对图像生成器以及,它们分别将彩色(红外)图像转换成红外(彩色)图像。这些生成器通过欺骗彩色图像和红外图像的分类器,给检测任务增加了更多的真实图像。同时这些判别器努力地分辨出这些合成图像的真伪。令生成器的参数分别为。判别器的从参数分别为,1为真实图像/0为合成图像。辨别器要最大化CE loss,而生成器要最小化CE loss以confuse判别器。彩色和红外域的对抗损失函数为:

除此之外,作者还给生成器添加了循环一致性约束,换句话说,丢到后,再丢到,循环生成出来的图像应该和起始图像差不多,因此所有的循环一致性损失为:

2.3 Pedestrian Detection in Thermal Images

作者通过最小化在每一张有标注红外图像上定义的平均检测损失函数来训练红外检测器,参数为

然后作者用带标注的彩色图像增强红外检测器的训练数据。一开始,将彩色图像转变为伪-红外图像;接下来将连同迁移到,从而得到了一组具有关联行人bbox的合成红外图像。在红外图像上定义的检测损失函数:

将真实的和合成的红外图像都喂进红外行人检测器,然后最小化总检测损失来训练:

2.4 Training Strategies

两种训练策略:

第一种是two-stage的:用不成对的彩色和红外图像(不带标注)训练域自适应模块一段时间,然后将合成数据和从原始图像中迁移过来的bbox标注混合,再加上真实的带标注的红外图像,做成一个训练检测器的混合数据集;

第二种是以迭代方式联合训练域自适应模块和行人检测模块的。和上一种方法不同的是检测模块的损失会把它的梯度后向传播到彩色-红外转换器,除此之外,合成红外图像也同时生成,并与真实热成像图一起训练检测模块。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值