Dropout
torch.nn.Dropout(p=0.5, inplace=False)
- p – probability of an element to be zeroed. Default: 0.5
- inplace – If set to
True
, will do this operation in-place. Default:False
训练过程中以概率P随机的将参数置0,其中P为置0的概率,例如P=1表示将网络参数全部置0
During training, randomly zeroes some of the elements of the input tensor with probability
p
using samples from a Bernoulli distribution. Each channel will be zeroed out independently on every forward call.
注意: Pytorch文档中给出了一点,输出的参数会以 1 1 − p \frac{1}{1-p} 1−p1进行一个缩放
Furthermore, the outputs are scaled by a factor of 1 1 − p \frac{1}{1-p} 1−p1 during training. This means that during evaluation the module simply computes an identity function.
下面例子展示出在dropout之后,参数变为了原来的 1 1 − p = 2 \frac{1}{1-p} = 2 1−p1=2倍
input = torch.tensor([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]], dtype=torch.float64)
input = torch.unsqueeze(input, 0)
m = nn.Dropout(p = 0.5)
output = m(input)
print("input: ", input)
print("output: ", output)
print("input: ", input)
'''
input:
tensor([[[1., 2., 3.],
[4., 5., 6.],
[7., 8., 9.]]], dtype=torch.float64)
output:
tensor([[[ 2., 4., 0.],
[ 0., 10., 12.],
[ 0., 16., 0.]]], dtype=torch.float64)
input:
tensor([[[1., 2., 3.],
[4., 5., 6.],
[7., 8., 9.]]], dtype=torch.float64)
'''
当我们把nn.Dropout
的inplace=True
时,计算的结果就会替换掉原来的输入input
,如下:
input = torch.tensor([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]], dtype=torch.float64)
input = torch.unsqueeze(input, 0)
m = nn.Dropout(p = 0.5, inplace=True)
output = m(input)
print("input: ", input)
print("output: ", output)
print("input: ", input)
'''
input:
tensor([[[1., 2., 3.],
[4., 5., 6.],
[7., 8., 9.]]], dtype=torch.float64)
output:
tensor([[[ 2., 4., 0.],
[ 0., 10., 12.],
[ 0., 16., 0.]]], dtype=torch.float64)
input:
tensor([[[ 2., 4., 0.],
[ 0., 10., 12.],
[ 0., 16., 0.]]], dtype=torch.float64)
'''
训练与测试的不同
在训练和测试的时候,nn.Dropout
的表现是不同的,在训练时nn.Dropout
会以概率p
随机的丢弃一些神经元,但是在测试时,所有神经元都不会被丢弃,如下
import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self, p=0.0):
super().__init__()
self.drop_layer = nn.Dropout(p=p)
def forward(self, inputs):
return self.drop_layer(inputs)
model = Model(p=0.5) # functional dropout
# creating inputs
inputs = torch.rand(10)
# forwarding inputs in train mode
print('Normal (train) model:')
print('Model ', model(inputs))
# switching to eval mode
model.eval()
# forwarding inputs in evaluation mode
print('Evaluation mode:')
print('Model ', model(inputs))
# show model summary
print('Print summary:')
print(model)
'''
Normal (train) model:
Model tensor([0.0000, 1.3517, 0.0000, 0.2766, 0.3060, 1.6334, 0.0000, 0.9740, 0.9118,
0.0000])
Evaluation mode:
Model tensor([0.9284, 0.6758, 0.3947, 0.1383, 0.1530, 0.8167, 0.2038, 0.4870, 0.4559,
0.2730])
Print summary:
Model(
(drop_layer): Dropout(p=0.5, inplace=False)
)
'''