飞桨PaddleX 3.0 beta开源实战学习笔记#paddle#paddlex

PaddleX 提供了丰富的模型产线,模型产线由一个或多个模型组合实现,每个模型产线都能够解决特定的场景任务问题。PaddleX 所提供的模型产线均支持快速体验,如果效果不及预期,也同样支持使用私有数据微调模型,并且 PaddleX 提供了 Python API,方便将产线集成到个人项目中。使用 PaddleX 前,需要进行环境准备,安装依赖项,推荐使用 PaddleX 官方镜像安装,也可使用其他自定义方式安装。

1.环境准备

这里介绍的是基于win10系统CUDA11.8系统下的本地配置教程。由于之前在其他虚拟环境中屡次出现版本冲突及小版本冲突的问题,建议大家使用新的隔离环境进行配置,仅个人多次报错经验所谈,大佬有意见勿喷。

1.1 新建虚拟环境

conda create --name paddle python=3.10

打开命令行窗口,使用上面的代码,新建虚拟环境paddle,Proceed ([y]/n)?选择 y
在这里插入图片描述
然后通过命令行代码activate paddle激活该环境,接下来选择对应cuda版本的代码安装paddle

# gpu
# 该命令适用于 CUDA 版本为 11.8 的机器环境
 python -m pip install paddlepaddle-gpu==3.0.0b1 -i 
https://www.paddlepaddle.org.cn/packages/stable/cu118/

# 该命令适用于 CUDA 版本为 12.3 的机器环境
 python -m pip install paddlepaddle-gpu==3.0.0b1 -i 
https://www.paddlepaddle.org.cn/packages/stable/cu123/

其他版本可以参考paddle官网链接,按照提示进行安装
在这里插入图片描述
我这里用的是cuda11.8机器环境下的,可以看到直接安装过程中会出现还有一些安装包未安装,接下来就可以直接安装提示去把这部分补齐。
在这里插入图片描述
比如说缺少pandasmatplotliblxmlopenpyxlimageio等依次补齐

在这里插入图片描述
在这里插入图片描述
按照提示flask>=1.1.1,安装pip install flask==1.1.1结果显示

ERROR: pip’s dependency resolver does not currently take into account
all the packages that are installed. This behaviour is the source of
the following dependency conflicts. flask-babel 3.1.0 requires
Flask>=2.0, but you have flask 1.1.1 which is incompatible.

那就继续升级版本pip install flask==2.0,显示安装成功,至此所有红色报错皆已安装。
在这里插入图片描述

1.2 验证 PaddlePaddle是否安装成功

使用以下命令可以验证 PaddlePaddle 是否安装成功。

python -c "import paddle; paddle.utils.run_check()"

查看 PaddlePaddle 版本的命令如下:

python -c "import paddle; print(paddle.__version__)"

如果安装成功,将输出如下内容:

3.0.0-beta1

在这里插入图片描述

2. 安装 PaddleX

2.1 获取源码

【推荐】从 GitHub 下载
使用下述命令从 GitHub 获取 PaddleX 最新源码,使用科学上网的方式的话,那就很快了

git clone https://github.com/PaddlePaddle/PaddleX.git

在这里插入图片描述
下载完里面文件如下
在这里插入图片描述

从 Gitee 下载
如果访问 GitHub 网速较慢,可以从 Gitee 下载,命令如下:

git clone https://gitee.com/paddlepaddle/PaddleX.git

2.2 安装配置及依赖

参考下述命令,按提示操作,完成 PaddleX 依赖的安装。

cd PaddleX #这里直接cd 到前面你下载的PaddleX中

# 安装 PaddleX whl
## -e:以可编辑模式安装,当前项目的代码更改,都会直接作用到已经安装的 PaddleX Wheel
pip install -e .

# 安装 PaddleX 相关依赖
paddlex --install

# 完成安装后会有如下提示:
# All packages are installed.

在这里插入图片描述
如果出现新的依赖包不足的情况下,那就继续安装
在这里插入图片描述
在这里插入图片描述

Failed to build scikit-image
ERROR: Could not build wheels for scikit-image, which is required to install pyproject.toml-based projects这里是指安装scikit-image出错。前往https://pypi.tuna.tsinghua.edu.cn/simple/scikit-image/下载对应的.whl文件。比如我是win系统64位,python3.10版本,所以选择
scikit_image-0.19.0-cp310-cp310-win_amd64.whl
在这里插入图片描述

下载完成后,命令行cd到.whl对应文件位置

cd C:\Users\Administrator\Downloads

然后通过下面的代码进行安装

pip install scikit_image-0.19.0-cp310-cp310-win_amd64.whl

在这里插入图片描述
然后再继续上述安装
在这里插入图片描述
如果权限不足,可以加--user,当出现Successfully installed paddlex,则证明 paddlex安装成功。

安装 PaddleX 相关依赖
安装 PaddleX 相关依赖使用paddlex --install,它便会去github中自行寻找需要的依赖包并自行安装
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
出现绿色提示All packages are installed.即全部安装完成。

注意事项:安装过程中,需要克隆 Paddle 官方模型套件,–platform可以指定克隆源,可选github.com,gitee.com,分别代表这些套件从 github 上和 gitee 上克隆,默认为github.com;
如仅需要部分 Paddle 官方模型套件,可在命令中指定,如仅克隆 PaddleDetection 套件可使用命令:paddlex --install PaddleDetection。默认获取全部 Paddle 官方模型套件,为保证后续开发使用,建议采用默认安装。

3.快速体验

PaddleX 支持wheel包推理功能,完成环境准备后可以直接通过 PaddleX wheel 包在本地体验模型效果。快速体验方式,命令行直接运行以下代码:

paddlex --pipeline object_detection   --model PP-YOLOE_plus-S   --input https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/fall.png

运行成功,输出如下图所示。
在这里插入图片描述
输出图片在同一文件夹下fall.png
在这里插入图片描述
当体验完该产线之后,需要确定产线是否符合预期(包含精度、速度等),产线包含的模型是否需要继续微调,如果模型的速度或者精度不符合预期,则需要选择可替换的模型继续测试,确定效果是否满意。如果最终效果均不满意,则需要微调模型。

### 回答1: PaddleX模型可以通过PaddleLite进行部署,PaddleLite是PaddlePaddle的轻量级推理引擎,支持多种硬件平台和操作系统,可以实现高效的模型推理。具体步骤如下: 1. 安装PaddlePaddlePaddleX 2. 使用PaddleX训练模型,并保存为inference model 3. 使用PaddleLite将inference model转换为适合部署的格式 4. 在部署环境中使用PaddleLite加载模型,并进行推理 具体实现可以参考PaddleXPaddleLite的官方文档。 ### 回答2: PaddleX是一个基于飞桨PaddlePaddle深度学习框架的目标检测、图像分类、语义分割的开发工具,Python语言提供了一种快速且简便的方法来部署PaddleX模型。以下是在Python中部署PaddleX模型的步骤: 1. 确保已经安装了PaddlePaddlePaddleX库。可以通过pip install paddlex命令来安装PaddleX。 2. 导入所需的库。在Python代码中,我们需要导入PaddleX库和其他必要的库,如cv2(用于图像处理)和matplotlib(用于可视化结果)。 3. 加载模型和预测。使用paddlex在Python代码中加载预训练的模型,并使用图像进行预测。可以使用paddlex.det.Predictor类进行目标检测模型的预测,paddlex.seg.Predictor类进行语义分割模型的预测,paddlex.cls.Predictor类进行图像分类模型的预测。 4. 处理和可视化结果。根据模型类型,可以通过不同的方法处理和可视化预测结果。对于目标检测和语义分割,可以使用预测框和类别标签来可视化结果。对于图像分类,可以使用预测的标签来显示结果。 5. 运行代码并部署模型。运行Python代码来加载模型并进行预测。确保已将输入图像的路径或图像数组传递给预测器的predict方法,并显示预测的结果。 总的来说,使用Python部署PaddleX模型涉及导入库、加载模型、预测、结果处理和可视化等步骤。这些步骤可以帮助我们在Python环境中快速实现PaddleX模型的部署和应用。 ### 回答3PaddleX是一个基于PaddlePaddle开发的深度学习全流程开发套件,可以用于图像分类、目标检测、语义分割、实例分割等任务。在Python中部署PaddleX模型主要分为以下几个步骤: 1. 安装PaddleX:在部署PaddleX模型之前,首先需要在Python环境中安装PaddleX。可以使用pip安装命令:`pip install paddlex`。 2. 加载训练好的模型:要在Python中部署PaddleX模型,首先需要加载训练好的模型。可以使用`paddlex.load_model()`函数加载模型文件。 3. 预处理输入数据:在使用模型进行推理之前,需要对输入数据进行预处理。可以通过PaddleX提供的`paddlex.det.visualize()`函数对输入数据进行可视化。 4. 进行推理:对预处理后的输入数据使用加载好的模型进行推理,可以使用`paddle.infer()`函数。 5. 后处理输出结果:推理完成后,可以对输出结果进行后处理。根据具体的应用场景,可能需要将模型输出的张量转换为相应的标签或可视化结果。 6. 展示或保存结果:在Python中部署PaddleX模型后,可以将输出结果进行展示或保存。可以使用Matplotlib等库将结果可视化展示,或者使用OpenCV等库将结果保存为图片或视频。 需要注意的是,部署PaddleX模型时,还需要根据具体的应用场景进行适当的调整和优化,比如模型的输入输出格式、推理的并发等方面。此外,还可以考虑将部署好的PaddleX模型转为C++或者其他语言的部署方式,以进一步提升部署效率和性能。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值