- 博客(24)
- 资源 (1)
- 收藏
- 关注
原创 yolov系列(5,7,8等)训练时出现_pickle.UnpicklingError: STACK_GLOBAL requires str的解决办法
然后再继续进行训练就好了,一般更换工程(从5到7之类的,只是改变5的结构,用新的yaml文件之类的还属于5不算这个情况)进行训练时,都需要将这个文件删掉才可以正常训练。
2023-09-16 18:53:29 937 1
原创 YOLOv5 提升小目标识别能力 解决VisDrone2019数据集
YOLOv5增加一些tricks技巧去提升它的小目标检测能力,进而在VisDrone无人机拍摄的这个数据集上达到更好的效果
2023-09-16 03:04:17 5096 3
原创 CNN 经典模型:VGGNet
小卷积核是 VGG 的一个重要特点,虽然 VGG 是在模仿 AlexNet 的网络结构,但没有采用 AlexNet 中比较大的卷积核尺寸(如 7x7),而是通过降低卷积核的大小(3x3),增加卷积子层数来达到同样的性能(VGG:从 1 到 4 卷积子层,AlexNet:1 子层)。VGG 使用多个较小卷积核(3x3)的卷积层代替一个卷积核较大的卷积层,一方面可以减少参数,另一方面相当于进行了更多的非线性映射,可以增加网络的拟合 / 表达能力。3(图中用conv3表示)卷积核,在有些卷积层里则使用了1。
2023-09-15 05:39:59 201
原创 YOLOv8添加注意力机制小总结
注意力机制(Attention Mechanism)源于对人类视觉的研究。在认知科学中,由于信息处理的瓶颈,人类会选择性地关注所有信息的一部分,同时忽略其他可见的信息。上述机制通常被称为注意力机制。人类视网膜不同的部位具有不同程度的信息处理能力,即敏锐度(Acuity),只有视网膜中央凹部位具有最强的敏锐度。简而言之,注意力机制源于自然界人类视觉的研究。人类的视觉会天然地进行一个抉择,就是选择性地关注所有信息的一个部分,同事就会忽略其他可见的信息。就属于是合理的利用有限的信息处理资源。
2023-09-15 03:20:50 8139 6
原创 CNN 经典模型:AlexNet
这一层中每个 GPU 都有 128 个卷积核,每个卷积核的尺寸是 3×3×192,卷积的步长是 1 个像素,经卷积后的尺寸为 (13+1+1-3)/1+1=13,每个 GPU 中有 13×13×128 个卷积核,2 个 GPU 卷积后生成 13×13×256 的像素层。第四层输入数据为第三层输出的 2 组 13×13×192 的像素层,类似于第三层,为便于后续处理,每幅像素层的上下左右边缘都填充 1 个像素,填充后的尺寸变为 (13+1+1)×(13+1+1)×192,分布在两个 GPU 中进行运算。
2023-04-01 22:33:34 415
原创 DenseNet
YOLO系列是一个大杂烩,把很多的前沿技术都融合到一起了,CSP结构借鉴了DenseNet的想法,所以,开始啃DenseNetDenseNet 是一种在计算机视觉领域得到广泛应用的神经网络架构。它旨在解决深度神经网络中梯度消失的问题。DenseNet 背后的想法是以密集的方式将每一层连接到每一层。这意味着每一层都接收来自所有先前层的输入,并将其输出提供给所有后续层。这创建了一个紧凑高效的网络架构,可以有效地学习特征。
2023-03-30 22:10:54 120
原创 darknet-19与darknet53
Darknet是最经典的一个深层网络,结合Resnet的特点在保证对特征进行超强表达的同时又避免了网络过深带来的梯度问题,主要有Darknet19和Darknet53。
2023-03-30 21:28:56 1470
原创 线特征SLAM
*——众所周知,低纹理场景是依赖点对应的几何计算机视觉算法的主要致命弱点之一,尤其是对于视觉 SLAM。然而,在许多环境中,尽管纹理较低,但仍然可以可靠地估计基于线的几何基元,例如在城市和室内场景中,或者在结构化边缘占主导地位的所谓“曼哈顿世界”中。在本文中,我们提出了一种解决方案来处理这些情况。具体来说,我们建立在 ORB-SLAM 的基础上,大概是当前最先进的解决方案,无论是在准确性还是效率方面,并扩展其公式以同时处理点和线对应。
2022-12-29 01:01:09 1464
原创 DLT求解PnP问题
PnP问题解法问题描述Perspective-n-Point (PnP) 问题:如下图,1)给定 [公式] 个3D参考点 [公式] 到摄像机图像上2D投影点 [公式] 的匹配点对;2)已知 3D点在世界坐标系下的坐标,2D点在图像坐标系下的坐标;3)已知摄像机的内参数 [公式] 。目的:求世界坐标系与摄像机坐标系之间的位姿变换 [公式]用途:相机位姿跟踪,物体位姿跟踪,AR/VR,机器人操作,SLAM中位姿初值求解……常用解法:DLT,P3P,EPnP,UPnP。PnP算法分为直接发和优
2022-05-04 19:50:03 1158
转载 视觉slam14讲第九章代码阅BA优化g2o部分
#include <g2o/core/base_vertex.h>#include <g2o/core/base_binary_edge.h>#include <g2o/core/block_solver.h>#include <g2o/core/optimization_algorithm_levenberg.h>#include <g2o/solvers/csparse/linear_solver_csparse.h>#include
2021-07-19 23:24:42 366
转载 视觉slam14讲第六章代码阅读
摘录自高翔视觉slam14讲第6章《非线性优化》#include <iostream>#include <g2o/core/g2o_core_api.h>#include <g2o/core/base_vertex.h>#include <g2o/core/base_unary_edge.h>#include <g2o/core/block_solver.h>#include <g2o/core/optimization_algo
2021-07-19 23:21:43 331 1
转载 视觉slam14讲第七章后端代码转载阅读
#include <iostream>#include <opencv2/core/core.hpp>#include <opencv2/features2d/features2d.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/calib3d/calib3d.hpp>#include <Eigen/Core>#include <g2o/core/
2021-07-19 23:16:31 256
原创 百度Apollo开发者社区课程学习(1)高精地图与自动驾驶的关系
百度Apollo开发者社区课程学习@阿鑫百度Apollo开发者社区课程学习(1)高精地图与自动驾驶的关系自动驾驶分类百度在做L3和L4 后者主要还是限定在规定区域内的自动驾驶 L5这种属于完全自主 目前来看 还有点遥远。什么是高精地图HD Map = high definition map 高分辨率地图HAD Map = highly automated driving map 高度自动驾驶地图高精地图最显著的特点是其表征路面特征的精准全面性高精地图要求有更高的实时性高精地图 ~ 自动
2021-07-14 15:04:59 402
原创 roboware安装步骤记录
第一次安装Roboware需要的东西python自己去网上下载roboware到某个文件夹内 做好准备如果成功则万事大吉 但我就遇到了一个插曲需要的东西python// An highlighted blocksudo apt-get install python-pipsudo python -m pip install pylint自己去网上下载roboware到某个文件夹内 做好准备我在这里可以下载一个博主给的网盘链接链接: https://pan.baidu.com/s/1mn
2021-03-29 23:01:38 351
原创 ftp下载广播星历文件
公众FTP站点地址:http://garner.ucsd.edu/pub/ 多数可以匿名登录,用户名:anonymous,密码:Email地址(随便写一个貌似就可以 就是邮箱完整名称)
2021-03-23 20:08:32 954
转载 IMU 和 相机 初始化 标定
https://www.guyuehome.com/14675转载一篇关于IMU 和 相机 初始化 标定 数学原理和C++代码的帖子 来自古月论坛
2021-01-10 23:08:13 240 1
转载 2021-01-04
author: dckwin (原创作者 name : https://blog.csdn.net/qq_38649880)转载自:https://blog.csdn.net/qq_38649880/article/details/91975100this is the real author I just reprinted this article here to show my friends安装SDK 二进制安装 源码编译安装 安装ros包 测试这个包...
2021-01-04 11:59:30 148 2
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人