1.https://blog.csdn.net/weixin_42013825/article/details/90142840
根据上面的数据清洗流程,对数据集进行处理。
2.定义交叉函数。
3.对数据集进行特征的选择
4. 确定模型:
套索回归:Lasso regression
弹性网络回归:Elastic NET Regression
核岭回归:kernel ridge regression
梯度提高回归:Gradient Bootstring regresion
梯度提高:XGBoost
基于决策树的梯度框架:LightGBM
5. 查看数据模型在交叉验证中的结果(mean,std)
6. 堆积模型,最简单模型:平均基本模型。定义平均基本模型,对单个模型进行集成。
7. 模型检验,查看各个模型的得分。
8.根据得分最后结果,添加一个元模型(mate_model),并测试数据
9.叠加平均模型。拟合-学习-预测。元模型是为了比较其他几个模型。
10.定义评估函数,以及最后的学习和预测。
11.集合测试集,按占比吧各个模型数据加到一起,保存。