模型训练,基于Skearn.learn。学习理解

1.https://blog.csdn.net/weixin_42013825/article/details/90142840

根据上面的数据清洗流程,对数据集进行处理。

2.定义交叉函数。

3.对数据集进行特征的选择

4. 确定模型:

       套索回归:Lasso regression

       弹性网络回归:Elastic NET Regression

       核岭回归:kernel ridge regression

       梯度提高回归:Gradient Bootstring regresion

      梯度提高:XGBoost

       基于决策树的梯度框架:LightGBM

5. 查看数据模型在交叉验证中的结果(mean,std)

6. 堆积模型,最简单模型:平均基本模型。定义平均基本模型,对单个模型进行集成。

7. 模型检验,查看各个模型的得分。

8.根据得分最后结果,添加一个元模型(mate_model),并测试数据

9.叠加平均模型。拟合-学习-预测。元模型是为了比较其他几个模型。

10.定义评估函数,以及最后的学习和预测。

11.集合测试集,按占比吧各个模型数据加到一起,保存。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值