量子计算 21 量子算法 6 (Shor Part III: QFT+PF)

上回书介绍了QFT的量子电路,这其实是之前讲的Shor算法里面的第三步,我们今天来看第二步:

  1. 第一步,把质数分解问题,转化为周期寻找问题,这一步Shor认为是显然的,当然我们不会这么认为。。。
  2. 第二步,通过量子傅里叶变换QFT,以 O ( 1 ) O(1) O(1)查询复杂度解决周期寻找问题
  3. 第三步,建立QFT的量子电路,用 n O ( 1 ) = log ⁡ n O ( 1 ) n^{O(1)}=\log n^{O(1)} nO(1)=lognO(1)个量子门
  4. 第四步,把冰箱门关上,用Continued Fraction Algorithm把QFT的输出变成质数分解的结果,然后大象就装冰箱里了

1 周期寻找量子态

第二步就是在我们已经有了QFT之后,用QFT作用之后的测量结果如何能解决周期寻找问题(Period finding QF)

已知我们的第一步在量子计算19中已经得到了周期寻找问题的相关量子态:
在这里插入图片描述
∣ ψ ⟩ |\psi\rangle ψ的这些分量,本来是 ∣ 0101 …   ⟩ |0101\dots\rangle 0101形式的二进制,不过目前转化成了整数来表达,有 q q q个qubit,整数的范围也就是 0 ∼ ( 2 q − 1 ) = ( Q − 1 ) 0\sim (2^q-1)=(Q-1) 0(2q1)=(Q1);从向量的形式来看,其分量 ∣ r ⟩ |r\rangle r也就是在第 r r r个位置上为1的单位向量。

2 QFT矩阵

我们的第三步已经在量子计算20中完成,即得到了QFT的快速量子电路,现在我们进行第二步,即将QFT作用于上述量子态。

QFT其实是以下矩阵 F Q F_Q FQ:
在这里插入图片描述
F Q F_Q FQ是个 Q × Q Q\times Q Q×Q的矩阵, Q = 2 q Q=2^q Q=2q q q q是量子比特的数目; w i j = e 2 π i / Q w^{ij}=e^{2\pi i/Q} wij=e2πi/Q是单位1在复数范围的Q次方根。

3 QFT解决周期寻找问题

因此第二步就是 F Q ∣ ψ ⟩ F_Q|\psi\rangle FQψ,根据上述分析,对于 ∣ ψ ⟩ |\psi\rangle ψ中的第 l l l个分量 ∣ r + l s ⟩ |r+ls\rangle r+ls F Q ∣ r + l s ⟩ F_Q|r+ls\rangle FQr+ls的结果相当于取矩阵 F Q F_Q FQ的第 r + l s r+ls r+ls行,因此 F Q ∣ ψ ⟩ F_Q|\psi\rangle FQψ结果为:
在这里插入图片描述
第一个求和,代表的是 F Q F_Q FQ的第 r + l s r+ls r+ls行共有 Q Q Q个分量;第二个求和,代表的是 ∣ ψ ⟩ |\psi\rangle ψ共有 l l l个分量。

然后我们研究的问题就是,对于某个 ∣ k ⟩ |k\rangle k,其幅值的相干是constructive interference还是destructive interference,为此我们可以先忽略其中的global phase w r k w^{rk} wrk,因为对于特定的k是一样的,于是我们来看:在这里插入图片描述

假如Q是s的整数倍

我们知道 w i j = e 2 π i / Q w^{ij}=e^{2\pi i/Q} wij=e2πi/Q

k s ks ks不是Q的整数倍时,随着 l l l的增长, k s l m o d    Q ksl \mod Q kslmodQ会在 0 ∼ Q − 1 0\sim Q-1 0Q1之间周期增长,反应到复数的单位圆上如下图,所以 L L L个这些周期复数加起来大多数就互相抵消了,所以就产生了destructive interference
在这里插入图片描述
那当 k s ks ks是Q的整数倍的时候, w k s l = 1 w^{ksl}=1 wksl=1,因此这样的 ∣ k ⟩ |k\rangle k的幅值,在 l l l个求和之后,是发生了constructive interference的。

所以大概率上,我们观测到的 ∣ k ⟩ |k\rangle k,对某整数 c c c,满足 k s = c Q    ⟺    k = c Q s ks=cQ\iff k=c\frac{Q}{s} ks=cQk=csQ,所以我们经过多次运行量子电路可以获得多个: c 1 Q s , c 2 Q s , … c T Q s c_1\frac{Q}{s}, c_2\frac{Q}{s}, \dots c_T\frac{Q}{s} c1sQ,c2sQ,cTsQ,因此计算他们的最大公约数,在T很小的情况下,就能很大概率上获得我们想要的周期 s s s

假如Q不是s的整数倍

假设对于量子态分量 ∣ k ⟩ |k\rangle k,有 k = c Q s + Δ k=c\frac{Q}{s}+\Delta k=csQ+Δ,则当 Δ \Delta Δ越小,其被观测的结果越大,接下来分析: ∑ l = 0 L − 1 w k s l = ∑ l = 0 L − 1 e 2 π i k s l / Q = ∑ l = 0 L − 1 e 2 π i ( c Q s + Δ ) s l / Q = ∑ l = 0 L − 1 e 2 π i Δ s l / Q \sum_{l=0}^{L-1}w^{ksl}=\sum_{l=0}^{L-1} e^{2\pi iksl/Q}=\sum_{l=0}^{L-1} e^{2\pi i(c\frac{Q}{s}+\Delta)sl/Q}=\sum_{l=0}^{L-1} e^{2\pi i \Delta sl/Q} l=0L1wksl=l=0L1e2πiksl/Q=l=0L1e2πi(csQ+Δ)sl/Q=l=0L1e2πiΔsl/Q

因此,当 Δ \Delta Δ很小的时候,当 l l l 0 ∼ L − 1 0\sim L-1 0L1变化时,在复数单位圆上的变化如图,这种时候是方向相近的向量叠加,发生了constructive interference;在这里插入图片描述
反之,当 Δ \Delta Δ较大时候,不同的向量方向差异较大,就会产生周期变化互相抵消,产生destructive interference,因为我们知道 L ≈ Q s L\approx \frac{Q}{s} LsQ,所以 Δ \Delta Δ接近1的时候这些量子幅就相当于分布在单位圆周围一圈了,如果再小上几倍,比如小10倍,其实就变成了相当的constructive interference。

所以,很高概率上,我们观察到的 k = c Q s + Δ k=c\frac{Q}{s}+\Delta k=csQ+Δ,是非常接近某个整数 c Q s c\frac{Q}{s} csQ的,其概率分布图如下:
在这里插入图片描述
因此, k = c Q s + Δ    ⟺    k Q = c s + Δ Q    ⟺    ∣ k Q − c s ∣ = Δ Q k=c\frac{Q}{s}+\Delta\iff \frac{k}{Q}=\frac{c}{s}+\frac{\Delta}{Q}\iff |\frac{k}{Q}-\frac{c}{s}|=\frac{\Delta}{Q} k=csQ+ΔQk=sc+QΔQksc=QΔ,所以 ∣ k Q − c s ∣ = Δ Q |\frac{k}{Q}-\frac{c}{s}|=\frac{\Delta}{Q} Qksc=QΔ是很小的 ( ∼ 1 Q ) (\sim \frac{1}{Q}) (Q1),我们已知观测到的 k k k q q q个qubit ( Q = 2 q Q=2^q Q=2q),不知道的是 c c c s s s,仅仅知道他们都是整数,且 s < < Q s<<\sqrt{Q} s<<Q

怎么求解 c c c s s s呢?请见下回Continued Fractions!

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值