RAG系列之:深入浅出 Embedding

RAG系列之:深入浅出 Embedding

什么是文本向量化?

文本向量化就是将文本数据转成数字数据,例如:将文本 It was the best of times, it was the worst of times. 转成 [0, 1, 0, 2, 2, 2, 2, 2, 0, 1]

为什么要进行文本向量化?

因为计算机只能处理数字数据,而不能直接处理文本数据。为了让计算机高效地处理文本数据,只有将文本数据转成数字数据。文本向量化在人类语言和计算机之间架起了一座桥梁,使得计算机可以进行语言层面的操作。接下来介绍一些文本向量化的方法。

词袋模型

词袋模型是一种基于词频的文本向量化方法。它将文本数据表示为一个向量,其中每个元素表示一个单词在文本中出现的频率。

构建一个词袋模型,分为如下两个步骤:

  1. 构建一个包含所有单词的词汇表。
  2. 统计文本中单词出现的频率。假设有两个文本,内容为:

It was the best of times, it was the worst of times.

it was the age of wisdom, it was the age of foolishness.

首先,构建一个词汇表,它包含了上面文本中的所有单词(忽略大小写和标点符号)。构建的词汇表内容如下:

图片

然后,统计文本中每个单词的出现频率,文本向量的每个元素便是每个单词出现的频率。文本 It was the best of times, it was the worst of times. 中每个单词出现的频率如下:

单词频率
age0
best1
foolishness0
it2
of2
the2
times2
was2
wisdom0
worst1

由此,文本所对应的向量为:

图片

文本 it was the age of wisdom, it was the age of foolishness. 中每个单词出现的频率如下:

单词频率
age2
best0
foolishness1
it2
of2
the2
times0
was2
wisdom1
worst0

由此,文本所对对应的向量为:

图片

优点

  1. 词袋模型的概念和实现都非常简单,只需要统计词频。
  2. 由于模型只是简单的计数,计算效率高,尤其适合大规模文本数据的处理。

缺点

  1. 词袋模型不考虑词与词之间的顺序,这在一些需要上下文理解的任务中可能表现不佳。
  2. 词袋模型会生成一个高维稀疏向量,尤其是在处理大规模词汇表时,导致存储和计算资源消耗大。
  3. 当处理多种语言或非常大的文本语料库时,词汇表可能会变得非常庞大,增加计算复杂度。
  4. 只考虑了单词在当前文本中出现的频率而没有考虑在整个文档集合中出现的频率。

TF-IDF 模型

TF-IDF,全称为 “Term Frequency-Inverse Document Frequency”(词频-逆文档频率),它的主要目的是评估一个词在一个文档集合中的重要性。TF-IDF 通过结合词频和逆文档频率来衡量一个词的权重。

词频 (TF,Term Frequency)

  • 词频是指一个特定词在一个文档中出现的次数。TF 反映了词在文档中出现的频率,词频越高,词在该文档中的重要性可能越大。
  • 计算公式:TF(t,d) = (词 t 在文档 d 中出现的次数) / (文档 d 中总词数)。

逆文档频率 (IDF,Inverse Document Frequency)

  • 逆文档频率衡量的是一个词在整个文档集合中的重要性。一个词如果在很多文档中都出现,那么它的区分能力就不强,IDF 值就低。反之,出现较少的词则有较高的区分能力,IDF 值就高。
  • 计算公式:IDF(t,D) = ln(总文档数 N / 包含词 t 的文档数 df(t)),其中 N 是文档总数,df(t) 是包含词 t 的文档数。

TF-IDF

  • TF-IDF 是词频和逆文档频率的乘积,用于衡量一个词在文档中的重要性,同时减少常见词的影响。
  • 计算公式:TF-IDF(t,d,D) = TF(t,d) * IDF(t,D)。

我们使用词袋模型中的例子来展示 TF-IDF 的整个计算过程。

计算词频

由于在词袋模型中已经计算了每个单词的频率,所以复用上面的结果,文本 It was the best of times, it was the worst of times. 中每个单词出现的频率以及计算出的相应词频如下:

单词频率总词数词频
age0120/12 = 0
best1121/12 = 0.083
foolishness0120/12 = 0
it2122/12 = 0.167
of2122/12 = 0.167
the2122/12 = 0.167
times2122/12 = 0.167
was2122/12 = 0.167
wisdom0120/12 = 0
worst1121/12 = 0.083

文本 it was the age of wisdom, it was the age of foolishness. 中每个单词出现的频率以及计算出的相应词频如下:

单词频率总词数词频
age2122/12 = 0.167
best0120/12 = 0
foolishness1121/12 = 0.083
it2122/12 = 0.167
of2122/12 = 0.167
the2122/12 = 0.167
times0120/12 = 0
was2122/12 = 0.167
wisdom1121/12 = 0.083
worst0120/12 = 0

计算逆文档频率

逆文档频率的计算结果如下:

单词总文档数包含单词的文档数逆文档频率
age21ln(2/1) = 0.693
best21ln(2/1) = 0.693
foolishness21ln(2/1) = 0.693
it22ln(2/2) = 0
of22ln(2/2) = 0
the22ln(2/2) = 0
times21ln(2/1) = 0.693
was22ln(2/2) = 0
wisdom21ln(2/1) = 0.693
worst21ln(2/1) = 0.693

计算 TF-IDF

文本 It was the best of times, it was the worst of times. 的计算结果如下:

单词频率总词数词频逆文档频率TF-IDF
age0120/12 = 00.6930 * 0.693 = 0
best1121/12 = 0.0830.6930.083 * 0.693 = 0.058
foolishness0120/12 = 00.6930 * 0.693 = 0
it2122/12 = 0.16700.167 * 0 = 0
of2122/12 = 0.16700.167 * 0 = 0
the2122/12 = 0.16700.167 * 0 = 0
times2122/12 = 0.1670.6930.167 * 0.693 = 0.115
was2122/12 = 0.16700.167 * 0 = 0
wisdom0120/12 = 00.6930 * 0.693 = 0
worst1121/12 = 0.0830.6930.083 * 0.693 = 0.058

文本 it was the age of wisdom, it was the age of foolishness. 的计算结果如下:

单词频率总词数词频逆文档频率TF-IDF
age2122/12 = 0.1670.6930.167 * 0.693 = 0.115
best0120/12 = 00.6930 * 0.693 = 0
foolishness1121/12 = 0.0830.6930.083 * 0.693 = 0.058
it2122/12 = 0.16700.167 * 0 = 0
of2122/12 = 0.16700.167 * 0 = 0
the2122/12 = 0.16700.167 * 0 = 0
times0120/12 = 00.6930 * 0.693 = 0
was2122/12 = 0.16700.167 * 0 = 0
wisdom1121/12 = 0.0830.6930.083 * 0.693 = 0.058
worst0120/12 = 00.6930 * 0.693 = 0

TF-IDF 的优缺点

优点
  • 简单易懂且计算高效。
  • 在文本特征提取中效果显著。
缺点
  • 不能捕捉词语之间的语义关系。
  • 对长文档可能不够有效,因为 TF 值会偏高。
  • 对于很常见的词(比如“the”、“and”),即使经过 IDF 调整,仍可能会有较高权重。

Word2Vec

上面的词袋模型和 TF-IDF 都是单纯地计算单词的频率,而没有考虑单词与单词之间的顺序,因此不能捕获语义信息。Word2Vec 是一种基于神经网络的文本向量化方法。它使用神经网络来学习单词的向量表示形式,使得具有相似含义的单词在向量空间中的距离更近。Word2Vec 包括 CBOW(Continuous Bag-of-Words)和 Skip-gram 两种模型。CBOW 模型根据上下文单词预测目标单词,而 Skip-gram 模型根据目标单词预测上下文单词。这种方法可以捕捉单词之间的语义关系,但需要大量的语料库来训练模型。下面以 Skip-gram 模型为例来简单介绍模型的训练过程。

假设训练的文本为:The wide road shimmered in the hot sun.,上下文的窗口大小为 2。于是,在窗口内的单词为正样本,不在窗口内的单词为负样本,假设每个正样本所对应的负样本的个数为 4 个。生成正样本的过程如下,标绿的为当前单词,标红的为窗口内的单词,也就是正样本。

图片

接下来展示负样本的生成过程,负样本是不在窗口内的单词:

图片

下面将正样本和负样本合在一起以生成训练所需的训练样本。

图片

下面通过一个训练样本来展示整个的训练过程。首先初始化两个矩阵,一个 Embedding 矩阵,一个 Context 矩阵,矩阵的行数据为词汇表里的每个单词所对应的向量,刚开始是,矩阵里的数据都是随机的。

图片

每次训练,我们选取一个正样本以及其所对应的负样本以构成训练数据。例如:

图片

选择训练数据中的一行数据分别到 Embedding 矩阵和 Context 矩阵查询单词所对应的向量。

图片

图片

下面将每个单词的向量和其上下文中的单词所对应的向量求点积,点积的结果反映了两者的相似度。

图片

因为 label 的数值指的是概率,所以我们需要使用 sigmoid 函数将点积转成概率,转换后的结果如下:

图片

有了 label 这预测的概率值之后,就可以求出差值了,结果如下:

图片

有了误差之后,就可以使用误差来更新前面的 Embedding 矩阵和 Context 矩阵的值了。这便是整个的训练过程。

Word2Vec 的优缺点

优点:
  • Word2Vec 能够有效捕捉单词之间的语义相似度。例如,它能够识别“国王”和“王后”之间的关系,以及“男人”和“女人”之间的关系。
  • 使用优化的训练算法(如 Skip-Gram 和 CBOW),Word2Vec 可以在大规模语料库上高效地训练,生成高质量的词向量。
  • 用户可以根据具体应用需求调整词向量的维度,以平衡计算复杂度和表示能力。
  • Word2Vec 在处理未见过的词或罕见词时具有较好的泛化能力,因为它能够利用上下文信息来推断词义。
缺点:
  • Word2Vec 主要基于上下文窗口内的共现信息,忽略了单词顺序,无法捕捉到词序对语义的影响。
  • Word2Vec 为每个词生成一个固定的词向量,无法区分同一个词在不同上下文中的不同含义(即词的多义性问题)。
  • 由于词向量是基于词的共现频率学习的,对于稀有词或未见词,Word2Vec 的表现较差,词向量质量不高。
  • 虽然 Word2Vec 能够在大量未标注的数据上进行训练,但其训练过程完全是无监督的,无法利用标注数据中的监督信息来改进词向量质量。

总结

本文介绍了文本向量化的几种方法,包括词袋模型(Bag of Words)、TF-IDF(Term Frequency-Inverse Document Frequency)和Word2Vec。

词袋模型(Bag of Words) 通过统计每个词在文档中出现的频率来表示文档,不考虑词的顺序和上下文关系。其主要优点是简单易懂,计算效率高,但缺点是生成的向量维度高且无法捕捉词语间的语义关系。

TF-IDF(Term Frequency-Inverse Document Frequency):这种方法在词袋模型的基础上进行了改进,通过结合词频和逆文档频率,降低常见词的权重,提升区分性强的词的权重。它能更好地反映重要词语在文档中的相对重要性,但仍然不考虑词的上下文关系。

Word2Vec:这种方法通过神经网络模型将词语映射到低维向量空间中,能够捕捉到词语的语义关系。Word2Vec主要有两种模型:CBOW(Continuous Bag of Words)和Skip-gram。CBOW通过上下文预测目标词,Skip-gram则通过目标词预测上下文。Word2Vec的优点是能够捕捉词语的语义和上下文关系,缺点是训练复杂度较高。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值