线性回归模型
线性回归就是回归问题中的一种,线性回归假设目标值与特征之间线性相关,即满足一个多元一次方程。通过构建损失函数,来求解损失函数最小时的参数w :
假设:数据集
D
=
{
(
x
1
,
y
1
)
,
.
.
.
,
(
x
N
,
y
N
)
}
D = \{(x_1,y_1),...,(x_N,y_N) \}
D={(x1,y1),...,(xN,yN)},
x
i
∈
R
p
,
y
i
∈
R
,
i
=
1
,
2
,
.
.
.
,
N
x_i \in R^p,y_i \in R,i = 1,2,...,N
xi∈Rp,yi∈R,i=1,2,...,N,
X
=
(
x
1
,
x
2
,
.
.
.
,
x
N
)
T
,
Y
=
(
y
1
,
y
2
,
.
.
.
,
y
N
)
T
X = (x_1,x_2,...,x_N)^T,Y=(y_1,y_2,...,y_N)^T
X=(x1,x2,...,xN)T,Y=(y1,y2,...,yN)T
假设X和Y之间存在线性关系,模型的具体形式为
y
^
=
f
(
w
)
=
w
T
x
\hat{y}=f(w) =w^Tx
y^=f(w)=wTx
通常有两种办法求解回归系数:
最小二乘:
我们需要衡量真实值
y
i
y_i
yi与线性回归模型的预测值
w
T
x
i
w^Tx_i
wTxi之间的差距,在这里我们和使用二范数的平方和L(w)来描述这种差距,即:
L
(
w
)
=
∑
i
=
1
N
∣
∣
w
T
x
i
−
y
i
∣
∣
2
2
=
∑
i
=
1
N
(
w
T
x
i
−
y
i
)
2
=
(
w
T
X
T
−
Y
T
)
(
w
T
X
T
−
Y
T
)
T
=
w
T
X
T
X
w
−
2
w
T
X
T
Y
+
Y
Y
T
\begin{aligned} L(w) &= \sum\limits_{i=1}^{N}||w^Tx_i-y_i||_2^2=\sum\limits_{i=1}^{N}(w^Tx_i-y_i)^2 \\ &= (w^TX^T-Y^T)(w^TX^T-Y^T)^T \\ & = w^TX^TXw - 2w^TX^TY+YY^T\\ \end{aligned}
L(w)=i=1∑N∣∣wTxi−yi∣∣22=i=1∑N(wTxi−yi)2=(wTXT−YT)(wTXT−YT)T=wTXTXw−2wTXTY+YYT
因此,我们需要找到使得
L
(
w
)
L(w)
L(w)最小时对应的参数
w
w
w,即:
w
^
=
a
r
g
m
i
n
L
(
w
)
\hat{w} = argmin\;L(w)
w^=argminL(w)
为了达到求解最小化L(w)问题,我们应用高等数学的知识,使用求导来解决这个问题:
∂
L
(
w
)
∂
w
=
2
X
T
X
w
−
2
X
T
Y
=
\frac{\partial L(w)}{\partial w} = 2X^TXw-2X^TY =
∂w∂L(w)=2XTXw−2XTY=
因此:
w
^
=
(
X
T
X
)
−
1
X
T
Y
\hat{w} = (X^TX)^{-1}X^TY
w^=(XTX)−1XTY
极大似然估计
假设噪声
ϵ
∽
N
(
0
,
σ
2
)
,
y
=
f
(
w
)
+
ϵ
=
w
T
x
+
ϵ
\epsilon \backsim N(0,\sigma^2),y=f(w)+\epsilon=w^Tx+\epsilon
ϵ∽N(0,σ2),y=f(w)+ϵ=wTx+ϵ,因此:
y
∣
x
i
,
w
N
(
w
T
x
,
σ
2
)
y|x_i,w ~ N(w^Tx,\sigma^2)
y∣xi,w N(wTx,σ2)
我们使用极大似然估计MLE对参数w进行估计:
L
(
w
)
=
l
o
g
P
(
Y
∣
X
;
w
)
=
l
o
g
∏
i
=
1
N
P
(
y
i
∣
x
i
;
w
)
=
∑
i
=
1
N
l
o
g
P
(
y
i
∣
x
i
;
w
)
=
∑
i
=
1
N
l
o
g
(
1
2
π
σ
e
x
p
(
−
(
y
i
−
w
T
x
i
)
2
2
σ
2
)
)
=
∑
i
=
1
N
[
l
o
g
(
1
2
π
σ
)
−
1
2
σ
2
(
y
i
−
w
T
x
i
)
2
]
\begin{aligned} L(w) &= log\;P(Y|X;w) = log\;\prod_{i=1}^N P(y_i|x_i;w) = \sum\limits_{i=1}^{N} log\; P(y_i|x_i;w)\\ &= \sum\limits_{i=1}^{N}log(\frac{1}{\sqrt{2\pi \sigma}}exp(-\frac{(y_i-w^Tx_i)^2}{2\sigma^2})) \\&= \sum\limits_{i=1}^{N}[log(\frac{1}{\sqrt{2\pi}\sigma})-\frac{1}{2\sigma^2}(y_i-w^Tx_i)^2] \\ \end{aligned}
L(w)=logP(Y∣X;w)=logi=1∏NP(yi∣xi;w)=i=1∑NlogP(yi∣xi;w)=i=1∑Nlog(2πσ1exp(−2σ2(yi−wTxi)2))=i=1∑N[log(2πσ1)−2σ21(yi−wTxi)2]
a
r
g
m
a
x
w
L
(
w
)
=
a
r
g
m
i
n
w
[
l
(
w
)
=
∑
i
=
1
N
(
y
i
−
w
T
x
i
)
2
]
argmax_w L(w) = argmin_w[l(w) = \sum\limits_{i = 1}^{N}(y_i-w^Tx_i)^2]\\
argmaxwL(w)=argminw[l(w)=i=1∑N(yi−wTxi)2]
因此:线性回归的最小二乘估计<==>噪声 ϵ ∽ N ( 0 , σ 2 ) \epsilon\backsim N(0,\sigma^2) ϵ∽N(0,σ2)的极大似然估计
简单的线性回归有很多局限性,比如要满足X满秩,即 X ′ X X'X X′X可逆,回归系数才有解,若 ∣ X ′ X ∣ |X'X| ∣X′X∣近似为零,则会导致 β ^ \hat\beta β^ 的波动很大,存在复共线性,解决复共线性的方法一般有:岭回归估计,主成分估计;这两种方法都牺牲了估计的无偏性;
线性回归的推广
在线性回归中,我们假设因变量与特征之间的关系是线性关系,这样的假设使得模型很简单,但是缺点也是显然的,那就是当数据存在非线性关系时,我们使用线性回归模型进行预测会导致预测性能极其低下,因为模型的形式本身是线性的,无法表达数据中的非线性关系。
多项式回归
为了体现因变量和特征的非线性关系,一个很自然而然的想法就是将标准的线性回归模型:
y
i
=
w
0
+
w
1
x
i
+
ϵ
i
y_i = w_0 + w_1x_i + \epsilon_i
yi=w0+w1xi+ϵi
换成一个多项式函数:
y
i
=
w
0
+
w
1
x
i
+
w
2
x
i
2
+
.
.
.
+
w
d
x
i
d
+
ϵ
y_i = w_0 + w_1x_i + w_2x_i^2 + ...+w_dx_i^d + \epsilon
yi=w0+w1xi+w2xi2+...+wdxid+ϵ
对于多项式的阶数d不能取过大,一般不大于3或者4,因为d越大,多项式曲线就会越光滑,在X的边界处有异常的波动。(图中的边界处的4阶多项式拟合曲线的置信区间(虚线表示置信区间)明显增大,预测效果的稳定性下降。)
广义可加模型(GAM)
广义可加模型GAM实际上是线性模型推广至非线性模型的一个框架,在这个框架中,每一个变量都用一个非线性函数来代替,但是模型本身保持整体可加性。GAM模型不仅仅可以用在线性回归的推广,还可以将线性分类模型进行推广。具体的推广形式是:
标准的线性回归模型:
y
i
=
w
0
+
w
1
x
i
1
+
.
.
.
+
w
p
x
i
p
+
ϵ
i
y_i = w_0 + w_1x_{i1} +...+w_px_{ip} + \epsilon_i
yi=w0+w1xi1+...+wpxip+ϵi
GAM模型框架:
y
i
=
w
0
+
∑
j
=
1
p
f
j
(
x
i
j
)
+
ϵ
i
y_i = w_0 + \sum\limits_{j=1}^{p}f_{j}(x_{ij}) + \epsilon_i
yi=w0+j=1∑pfj(xij)+ϵi
GAM模型的优点与不足:
- 优点:简单容易操作,能够很自然地推广线性回归模型至非线性模型,使得模型的预测精度有所上升;由于模型本身是可加的,因此GAM还是能像线性回归模型一样把其他因素控制不变的情况下单独对某个变量进行推断,极大地保留了线性回归的易于推断的性质。
- 缺点:GAM模型会经常忽略一些有意义的交互作用,比如某两个特征共同影响因变量,不过GAM还是能像线性回归一样加入交互项 x ( i ) × x ( j ) x^{(i)} \times x^{(j)} x(i)×x(j)的形式进行建模;但是GAM模型本质上还是一个可加模型,如果我们能摆脱可加性模型形式,可能还会提升模型预测精度,详情请看后面的算法。
回归树
基于树的回归方法主要是依据分层和分割的方式将特征空间划分为一系列简单的区域。对某个给定的待预测的自变量,用他所属区域中训练集的平均数或者众数对其进行预测。由于划分特征空间的分裂规则可以用树的形式进行概括,因此这类方法称为决策树方法。决策树由结点(node)和有向边(diredcted edge)组成。结点有两种类型:内部结点(internal node)和叶结点(leaf node)。内部结点表示一个特征或属性,叶结点表示一个类别或者某个值。区域 𝑅1,𝑅2 等称为叶节点,将特征空间分开的点为内部节点。
建立回归树的过程大致可以分为以下两步:
- 将自变量的特征空间(即 x ( 1 ) , x ( 2 ) , x ( 3 ) , . . . , x ( p ) x^{(1)},x^{(2)},x^{(3)},...,x^{(p)} x(1),x(2),x(3),...,x(p))的可能取值构成的集合分割成J个互不重叠的区域 R 1 , R 2 , . . . , R j R_1,R_2,...,R_j R1,R2,...,Rj。
- 对落入区域 R j R_j Rj的每个观测值作相同的预测,预测值等于 R j R_j Rj上训练集的因变量的简单算术平均。
具体来说,就是:
- a. 选择最优切分特征j以及该特征上的最优点s:
遍历特征j以及固定j后遍历切分点s,选择使得下式最小的(j,s) m i n j , s [ m i n c 1 ∑ x i ∈ R 1 ( j , s ) ( y i − c 1 ) 2 + m i n c 2 ∑ x i ∈ R 2 ( j , s ) ( y i − c 2 ) 2 ] min_{j,s}[min_{c_1}\sum\limits_{x_i\in R_1(j,s)}(y_i-c_1)^2 + min_{c_2}\sum\limits_{x_i\in R_2(j,s)}(y_i-c_2)^2 ] minj,s[minc1xi∈R1(j,s)∑(yi−c1)2+minc2xi∈R2(j,s)∑(yi−c2)2] - b. 按照(j,s)分裂特征空间: R 1 ( j , s ) = { x ∣ x j ≤ s } 和 R 2 ( j , s ) = { x ∣ x j > s } , c ^ m = 1 N m ∑ x ∈ R m ( j , s ) y i , m = 1 , 2 R_1(j,s) = \{x|x^{j} \le s \}和R_2(j,s) = \{x|x^{j} > s \},\hat{c}_m = \frac{1}{N_m}\sum\limits_{x \in R_m(j,s)}y_i,\;m=1,2 R1(j,s)={x∣xj≤s}和R2(j,s)={x∣xj>s},c^m=Nm1x∈Rm(j,s)∑yi,m=1,2
- c. 继续调用步骤1,2直到满足停止条件,就是每个区域的样本数小于等于5。
- d. 将特征空间划分为J个不同的区域,生成回归树:
f
(
x
)
=
∑
m
=
1
J
c
^
m
I
(
x
∈
R
m
)
f(x) = \sum\limits_{m=1}^{J}\hat{c}_mI(x \in R_m)
f(x)=m=1∑Jc^mI(x∈Rm)
回归树与线性模型的比较:
线性模型的模型形式与树模型的模型形式有着本质的区别,具体而言,线性回归对模型形式做了如下假定: f ( x ) = w 0 + ∑ j = 1 p w j x ( j ) f(x) = w_0 + \sum\limits_{j=1}^{p}w_jx^{(j)} f(x)=w0+j=1∑pwjx(j),而回归树则是 f ( x ) = ∑ m = 1 J c ^ m I ( x ∈ R m ) f(x) = \sum\limits_{m=1}^{J}\hat{c}_mI(x \in R_m) f(x)=m=1∑Jc^mI(x∈Rm)。那问题来了,哪种模型更优呢?这个要视具体情况而言,如果特征变量与因变量的关系能很好的用线性关系来表达,那么线性回归通常有着不错的预测效果,拟合效果则优于不能揭示线性结构的回归树。反之,如果特征变量与因变量的关系呈现高度复杂的非线性,那么树方法比传统方法更优。
树模型的优缺点:- 树模型的解释性强,在解释性方面可能比线性回归还要方便。
- 树模型更接近人的决策方式。
- 树模型可以用图来表示,非专业人士也可以轻松解读。
- 树模型可以直接做定性的特征而不需要像线性回归一样哑元化。
- 树模型能很好处理缺失值和异常值,对异常值不敏感,但是这个对线性模型来说却是致命的。
- 树模型的预测准确性一般无法达到其他回归模型的水平,但是改进的方法很多。
评价指标
- MSE均方误差: MSE ( y , y ^ ) = 1 n samples ∑ i = 0 n samples − 1 ( y i − y ^ i ) 2 . \text{MSE}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples} - 1} (y_i - \hat{y}_i)^2. MSE(y,y^)=nsamples1∑i=0nsamples−1(yi−y^i)2.
- MAE平均绝对误差: MAE ( y , y ^ ) = 1 n samples ∑ i = 0 n samples − 1 ∣ y i − y ^ i ∣ \text{MAE}(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} \left| y_i - \hat{y}_i \right| MAE(y,y^)=nsamples1∑i=0nsamples−1∣yi−y^i∣
- R 2 R^2 R2决定系数: R 2 ( y , y ^ ) = 1 − ∑ i = 1 n ( y i − y ^ i ) 2 ∑ i = 1 n ( y i − y ˉ ) 2 R^2(y, \hat{y}) = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2} R2(y,y^)=1−∑i=1n(yi−yˉ)2∑i=1n(yi−y^i)2
- 解释方差得分: e x p l a i n e d _ v a r i a n c e ( y , y ^ ) = 1 − V a r { y − y ^ } V a r { y } explained\_{}variance(y, \hat{y}) = 1 - \frac{Var\{ y - \hat{y}\}}{Var\{y\}} explained_variance(y,y^)=1−Var{y}Var{y−y^}
sklearn实现上述算法
我们先导入Boston房价数据集
from sklearn import datasets
boston = datasets.load_boston() # 返回一个类似于字典的类
X = boston.data
y = boston.target
features = boston.feature_names
boston_data = pd.DataFrame(X,columns=features)
boston_data["Price"] = y
boston_data.head()
线性回归的实现
from sklearn import linear_model # 引入线性回归方法
lin_reg = linear_model.LinearRegression() # 创建线性回归的类
lin_reg.fit(X,y) # 输入特征X和因变量y进行训练
print("模型系数:",lin_reg.coef_) # 输出模型的系数
print("模型得分:",lin_reg.score(X,y)) # 输出模型的决定系数R^2
多项式回归
sklearn.preprocessing.PolynomialFeatures(degree=2, *, interaction_only=False, include_bias=True, order=‘C’)
这个函数将原始数据进行转换,新增多项式的数据列,例如将
[
a
,
b
]
[a,b]
[a,b]转换为
[
a
,
b
,
a
2
,
b
2
,
a
∗
b
]
[a,b,a^2,b^2,a*b]
[a,b,a2,b2,a∗b];
- 参数:
degree:特征转换的阶数。
interaction_onlyboolean:是否只包含交互项,默认False 。
include_bias:是否包含截距项,默认True。
order:str in {‘C’, ‘F’}, default ‘C’,输出数组的顺序。
from sklearn.preprocessing import PolynomialFeatures
X_arr = np.arange(6).reshape(3, 2)
print("原始X为:\n",X_arr)
poly = PolynomialFeatures(2)
print("2次转化X:\n",poly.fit_transform(X_arr))
poly = PolynomialFeatures(interaction_only=True)
print("2次转化X:\n",poly.fit_transform(X_arr))
GAM模型的实现
先安装pgagm包;
from pygam import LinearGAM
gam = LinearGAM().fit(boston_data[boston.feature_names], y)
gam.summary()
回归树的实现
在sklearn中的函数为:
sklearn.tree.DecisionTreeRegressor(*, criterion=‘mse’, splitter=‘best’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, presort=‘deprecated’, ccp_alpha=0.0)
- 参数:(列举几个重要的,常用的,详情请看上面的官网)
criterion:{“ mse”,“ friedman_mse”,“ mae”},默认=“ mse”。衡量分割标准的函数 。
splitter:{“best”, “random”}, default=”best”。分割方式。
max_depth:树的最大深度。
min_samples_split:拆分内部节点所需的最少样本数,默认是2。
min_samples_leaf:在叶节点处需要的最小样本数。默认是1。
min_weight_fraction_leaf:在所有叶节点处(所有输入样本)的权重总和中的最小加权分数。如果未提供sample_weight,则样本的权重相等。默认是0。
from sklearn.tree import DecisionTreeRegressor
reg_tree = DecisionTreeRegressor(criterion = "mse",min_samples_leaf = 5)
reg_tree.fit(X,y)
reg_tree.score(X,y)
#0.9376307599929274