文本分类器设计

     文本分类的目的是将文本文档分为不同的类,这是NLP中非常重要的分析手段。这里将使用一种技术,它基于一种叫作tf-idf的统计数据,它表示词频-逆文档频率(term frequency—inversedocument frequency)。这个统计工具有助于理解一个单词在一组文档中对某一个文档的重要性。它可以作为特征向量来做文档分类。

实际上就是利用现有数据或者已有模型来预测输入的文档的类别。

分为以下几个基本步骤:
    (1)先期要人工进行定义,当然,实际中,结合着机器算法共同完成效果更佳。类别定义,可以用词典映射的方式进行,这些类型我们以新闻组数据集为例。

 category_map ={'misc.forsale': 'Sales', 'rec.motorcycles': 'Motorcycles','rec.sport.baseball':'Baseball', 'sci.crypt': 'Cryptography','sci.space': 'Space'}

    (2)基于这种定义类型,进行训练数据的加载。

  training_data =fetch_20newsgroups(subset='train', categories=category_map.keys(),

shuffle=True, random_state=7)

    (3)导入特征提取器,然后进行特征提取。我们直接加载sklearn中CountVectorizer特征提取器。

    from sklearn.feature_extraction.textimport CountVectorizer

    vectorizer = CountVectorizer()

    X_train_termcounts =vectorizer.fit_transform(training_data.data)

   (4)利用分类器,这里选择多项式朴素贝叶斯(Multinomial Naive Bayes)分类器进行分类,且利用tfidfTransformer先进行特征向量转换,然后再根据这个向量再进行分类。

    from sklearn.naive_bayes importMultinomialNB

    from sklearn.feature_extraction.text import TfidfTransformer

    tfidf_transformer = TfidfTransformer()

    X_train_tfidf = tfidf_transformer.fit_transform(X_train_ termcounts)

    利用tf-idf变换器定义对象,并对步骤(3)得到的特征向量进行tf-idf转换,然后利用多项式朴素贝叶斯分类器进行训练分类。

    classifier = MultinomialNB().fit(X_train_tfidf, training_data.target)

   (5)到这,训练完毕,输入数据可以进行分类预测了。

         首先,用词频统计转换输入数据:

X_input_termcounts = vectorizer.transform(input_data)

         然后,用tf-idf变换器变换输入数据:

X_input_tfidf = tfidf_transformer.transform(X_input_termcounts)

         最后,用训练过的分类器来对输入数据的tfidf向量进行预测,也即就是对输入句子进行输出类型预测:

        # 预测输出类型

        predicted_categories = classifier.predict(X_input_tfidf)

(6)结果输出:

        for sentence, category in zip(input_data, predicted_categories):

        print ('\nInput:', sentence,'\nPredicted category:', category_map[training_data\

        .target_names[category]])

         当然,需要导入包:fromsklearn.datasets import fetch_20newsgroups,这个数据集中包括训练集和测试集,共20个新闻组,感兴趣的读者,可以利用下面的代码读取数据集。

    from sklearn.datasets importfetch_20newsgroups 

    newsgroups_train =fetch_20newsgroups(subset='train') 

    newsgroups_test =fetch_20newsgroups(subset='test') 

    print (len(newsgroups_train.data)) 

    print (len(newsgroups_test.data))  

    news =fetch_20newsgroups(subset='all') 

    print (len(news.data)) 

     这个功能比较简单,以后有时间,我们将设计一款实用型分类器。大家,加油!

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
贝叶斯文本分类是一种常用的机学习算法,可以用于将文本数据进行分类。基于Java和Map/Reduce(MapReduce)框架实现贝叶斯文本分类设计可以分为以下几个步骤: 1. 数据预处理:首先,需要将文本数据进行预处理,包括去除停用词、标点符号、数字等非关键信息,并进行分词操作,将每个文本分割成一个个词语。 2. 计算词语频率:使用Map/Reduce框架,将每个文本中的词语作为键,将出现的频率作为值进行统计。Map阶段将每个文本拆分成词语,并为每个词语设置初始频率为1。Reduce阶段将相同的词语进行合并,并计算总频率。 3. 计算词语条件概率:对于每个类别,需要计算每个词语的条件概率。通过Map阶段将每个词语与它所属的类别作为键值对进行传输。Reduce阶段将相同的词语进行合并,并统计该词语在每个类别中的频率。 4. 计算类别概率:通过Map/Reduce框架,将每个文本中的类别作为键进行传输。Reduce阶段将相同的类别进行合并,并统计该类别在整个文本集中的频率。 5. 应用贝叶斯公式:对于一个新的文本,首先将其进行预处理,并计算出每个词语在各个类别中的条件概率。然后,根据贝叶斯公式,将各个词语的条件概率相乘,再乘以各个类别的概率,最终得到该文本属于每个类别的概率。根据概率大小,将文本分类到最可能的类别。 以上就是基于Java和Map/Reduce实现的贝叶斯文本分类设计。这种设计可以充分利用Map/Reduce框架的并行计算能力,加快计算速度,提高分类的效率。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值