fasttext 使用笔记

本文详细介绍了FastText的安装、使用方法,包括用train_unsupervised学习词向量,用train_supervised进行文本分类。同时,讨论了模型对象的属性和功能,如重载的查询和判断函数,以及如何自定义函数评估模型的precision和recall。
摘要由CSDN通过智能技术生成

安装

!pip install fasttext

train_unsupervised 用于学习词向量

# Skipgram model :
model = fasttext.train_unsupervised('data.txt', model='skipgram')

# or, cbow model :
model = fasttext.train_unsupervised('data.txt', model='cbow')

其中 data.txtutf-8 编码的文本文件。

train_supervised 用于文本分类

model = fasttext.train_supervised('data.txt')

其中 data.txt 是多行文本,默认标签的格式为 __label__<真实标签>

Signature

fasttext.train_unsupervised(
	input,             # training file path (required)
	model,             # unsupervised fasttext model {cbow, skipgram} [skipgram]
	lr,                # learning rate [0.05]
	dim,               # size of word vectors [100]
	ws,                # size of the context window [5]
	epoch,             # number of epochs [5]
	minCount
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值