线性代数(线性方程组&特征值和特征向量&二次型)

本文深入探讨了线性代数中的线性方程组解的性质,特征值与特征向量的概念及其应用。详细阐述了齐次和非齐次线性方程组的解结构,以及矩阵可逆、对角化和正定性的条件。此外,通过实例展示了如何通过正交变换将二次型化为标准形,并求解二次型的正交变换矩阵。
摘要由CSDN通过智能技术生成
  • 第四章 线性方程组:

  1. 若矩阵为 A m × n A_{m×n} Am×n,则齐次线性方程组 A X = 0 AX=0 AX=0
    ①只有零解 ⇔ r ( A ) = n ⇔ α 1 , α 2 , ⋯ , α n r(A)=n ⇔ α_1,α_2,⋯,α_n r(A)=nα1α2αn线性无关。
    ②有非零解(或有无数个解) ⇔ r ( A ) < n ⇔ α 1 , α 2 , ⋯ , α n r(A)<n ⇔ α_1,α_2,⋯,α_n r(A)<nα1α2αn线性相关。
  2. 若矩阵为 A n × n A_{n×n} An×n,则齐次线性方程组 A X = 0 AX=0 AX=0
    ①只有零解 ⇔ ∣ A ∣ ≠ 0 |A|≠0 A=0; ②有非零解⇔ ∣ A ∣ = 0 |A|=0 A=0
    3.若矩阵为 A m × n A_{m×n} Am×n,则非齐次线性方程组 A X = b AX=b AX=b
    (1)有解 ⇔ r ( A ) = r ( A ˉ ) r(A)=r(\bar{A}) r(A)=r(Aˉ) ⇔ 向量b可由 α 1 , α 2 , ⋯ , α n α_1,α_2,⋯,α_n α1α2αn线性表示。
    ①当 r ( A ) = r ( A ˉ ) = n r(A)=r(\bar{A})=n r(A)=r(Aˉ)=n时,有唯一解;
    ②当 r ( A ) = r ( A ˉ ) < n r(A)=r(\bar{A})<n r(A)=r(Aˉ)<n时,有无数个解;
    (2)无解⇔ r ( A ) ≠ r ( A ˉ )        [ r ( A ˉ ) = r ( A ) + 1 ] r(A)≠r(\bar{A})\;\;\;[r(\bar{A})=r(A)+1] r(A)=r(Aˉ)[r(Aˉ)=r(A)+1]⇔ 向量b不可由 α 1 , α 2 , ⋯ , α n α_1,α_2,⋯,α_n α1α2αn线性表示。
    4.若矩阵为 A n × n A_{n×n} An×n,则非齐次线性方程组 A X = b AX=b AX=b
    (1)有解 ⇔ r ( A ) = r ( A ˉ ) r(A)=r(\bar{A}) r(A)=r(Aˉ)
    ①当 ∣ A ∣ ≠ 0 |A|≠0 A=0时,有唯一解; ②当 ∣ A ∣ = 0 |A|=0 A=0时,有无数个解。
    (2)无解⇔ r ( A ) ≠ r ( A ˉ ) [ r ( A ˉ ) = r ( A ) + 1 ] r(A)≠r(\bar{A}) [r(\bar{A})=r(A)+1] r(A)=r(Aˉ)[r(Aˉ)=r(A)+1]

线性方程组解的结构:

①设 X 1 , X 2 , . . . , X s X_1,X_2,...,X_s X1X2...Xs为齐次线性方程组 A X = 0 AX=0 AX=0的一组解,则 k 1 X 1 + k 2 X 2 + . . . + k s X s k_1X_1+k_2X_2+...+k_sX_s k1X1+k2X2+...+ksXs也为齐次线性方程组 A X = 0 AX=0 AX=0的解,其中 k 1 , k 2 , . . . , k s k_1,k_2,...,k_s k1k2...ks为任意常数
②设 η 0 η_0 η0为非齐次线性方程组 A X = b AX=b AX=b的一个解, X 1 , X 2 , . . . , X s X_1,X_2,...,X_s X1X2...Xs为齐次线性方程组 A X = 0 AX=0 AX=0的一组解,则 k 1 X 1 + k 2 X 2 + . . . + k s X s + η 0 k_1X_1+k_2X_2+...+k_sX_s+η_0 k1X1+k2X2+...+ksXs+η0为非齐次线性方程组 A X = b AX=b AX=b的解
③设 η 1 , η 2 η_1,η_2 η1η2为非齐次线性方程组 A X = b AX=b AX=b的两个解,则 η 2 − η 1 η_2-η_1 η2η1为齐次线性方程组 A X = 0 AX=0 AX=0的一个解
④设 X 1 , X 2 , . . . , X s X_1,X_2,...,X_s X1X2...Xs为非齐次线性方程组 A X = b AX=b AX=b的一组解,则 k 1 X 1 + k 2 X 2 + . . . + k s X s k_1X_1+k_2X_2+...+k_sX_s k1X1+k2X2+...+ksXs A X = b AX=b AX=b的解的充要条件是 k 1 + k 2 + . . . + k s = 1 k_1+k_2+...+k_s=1 k1+k2+...+ks=1
⑤设 X 1 , X 2 , . . . , X s X_1,X_2,...,X_s X1X2...Xs为非齐次线性方程组 A X = b AX=b AX=b的一组解,则 k 1 X 1 + k 2 X 2 + . . . + k s X s k_1X_1+k_2X_2+...+k_sX_s k1X1+k2X2+...+ksXs A X = 0 AX=0 AX=0的解的充要条件是 k 1 + k 2 + . . . + k s = 0 k_1+k_2+...+k_s=0 k1+k2+...+ks=0

线性方程组的通解:
齐次线性方程组AX=0的基础解系与通解:

  • 基础解系——设r(A)=r<n,则AX=0所有解构成的解向量组的极大线性无关组称为方程组AX=0的一个基础解系。当r(A)=r时,AX=0的基础解系所含的线性无关的解向量的个数为n-r个
  • 通解: ξ 1 , ξ 2 , . . . , ξ n − r ξ_1,ξ_2,...,ξ_{n-r} ξ1ξ2...ξnr为齐次线性方程组 A X = 0 AX=0 AX=0的一个基础解系,则称 k 1 ξ 1 + k 2 ξ 2 + . . . + k n − r ξ n − r k_1ξ_1+k_2ξ_2+...+k_{n-r}ξ_{n-r} k1ξ1+k2ξ2+...+knrξnr为齐次线性方程组 A X = 0 AX=0 AX=0的通解,其中, k 1 , k 2 , . . . , k n − r k_1,k_2,...,k_{n-r} k1k2...knr为任意常数

非齐次线性方程组AX=b的通解:

  • r ( A ) = r ( A ~ ) = r < n r(A)=r(Ã)=r<n r(A)=r(A~)=r<n,且 ξ 1 , ξ 2 , . . . , ξ n − r ξ_1,ξ_2,...,ξ_{n-r} ξ1ξ2...ξnr A X = b AX=b AX=b的导出方程组 A X = 0 AX=0 AX=0的一个基础解系, η 0 η_0 η0 A X = b AX=b AX=b的一个解,则 A X = b AX=b AX=b的通解为 k 1 ξ 1 + k 2 ξ 2 + . . . + k n − r ξ n − r + η 0 k_1ξ_1+k_2ξ_2+...+k_{n-r}ξ_{n-r}+η_0 k1ξ1+k2ξ2+...+knrξnr+η0,其中, k 1 , k 2 , . . . , k n − r k_1,k_2,...,k_{n-r} k1k2...knr为任意常数

  • 第五章 特征值和特征方程:

求矩阵的特征值通常有三种方法:

{ 公 式 法 : 由 ∣ λ E − A ∣ = 0 , 求 出 A 的 特 征 值 定 义 法 : 由 A X = λ X , 求 出 A 的 特 征 值 关 联 矩 阵 法 { 由 A 与 A ⁻ ¹ , A ∗ 的 特 征 值 的 关 系 求 出 A 的 特 征 值 由 P ⁻ ¹ A P = B , 可 得 A ∽ B , 根 据 特 征 值 相 同 的 性 质 求 出 A 的 特 征 值 \begin{cases} 公式法:由|λE-A|=0,求出A的特征值\\ 定义法:由AX=λX,求出A的特征值\\ 关联矩阵法 \begin{cases} 由A与A⁻¹,A^*的特征值的关系求出A的特征值\\ 由P⁻¹AP=B,可得A\backsim B,根据特征值相同的性质求出A的特征值 \end{cases} \end{cases} λEA=0AAX=λXA{AA¹AAP¹AP=BABA

例1:

求矩阵 A = ( 1 2 2 2 1 2 2 2 1 ) A=\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \\ \end{pmatrix} A=122212221的全部特征值与对应的特征向量

  • 使用定义法:
  • ∣ λ E − A ∣ = ∣ λ − 1 − 2 − 2 − 2 λ − 1 − 2 − 2 − 2 λ − 1 ∣ = ( λ + 1 ) ² ( λ − 5 ) = 0 |λE-A|=\begin{vmatrix} λ-1 & -2 & -2 \\ -2 & λ-1 & -2 \\ -2 & -2 & λ-1 \\ \end{vmatrix}=(λ+1)²(λ-5)=0 λEA=λ1222λ1222λ1=(λ+1)²(λ5)=0,得矩阵A得特征值为 λ 1 = λ 2 = − 1 , λ 3 = 5 λ_1=λ_2=-1,λ_3=5 λ1=λ2=1λ3=5
  • λ 1 = λ 2 = − 1 λ_1=λ_2=-1 λ1=λ2=1代入 ( λ E − A ) X = 0 (λE-A)X=0 (λEA)X=0,由 E + A = ( 2 2 2 2 2 2 2 2 2 ) → ( 1 1 1 0 0 0 0 0 0 ) E+A=\begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix} E+A=222222222100100100,得 λ 1 = λ 2 = − 1 λ_1=λ_2=-1 λ1=λ2=1对应的线性无关得特征向量为 α 1 = ( − 1 1 0 ) , α 2 = ( − 1 0 1 ) α_1=\begin{pmatrix} -1\\ 1\\ 0\\ \end{pmatrix},α_2=\begin{pmatrix} -1\\ 0\\ 1\\ \end{pmatrix} α1=110α2=101
  • λ 3 = 5 λ_3=5 λ3=5代入 ( λ E − A ) X = 0 (λE-A)X=0 (λEA)X=0,由 5 E − A = ( 4 − 2 − 2 − 2 4 − 2 − 2 − 2 4 ) → ( 1 0 − 1 0 1 − 1 0 0 0 ) 5E-A=\begin{pmatrix} 4 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 4 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ \end{pmatrix} 5EA=422242224100010110,得 λ 3 = 5 λ_3=5 λ3=5对应的线性无关得特征向量为 α 3 = ( 1 1 1 ) α_3=\begin{pmatrix} 1\\ 1\\ 1\\ \end{pmatrix} α3=111

例2:

设A是三阶矩阵,α是三维非零列向量,向量组 α , A α , A ² α α,Aα,A²α αAαA²α线性无关,且 A ³ α = 4 α + 4 A α − A ² α A³α=4α+4Aα-A²α A³α=4α+4AαA²α
(1)求A的特征值 (2)求 ∣ A ∗ + 3 E ∣ |A^*+3E| A+3E

  • (当矩阵n阶,向量线性无关的个数为n时适用关联矩阵的第二种方法)
  • (1)令 P = ( α , A α , A ² α ) P=(α,Aα,A²α) P=(αAαA²α),因为 α , A α , A ² α α,Aα,A²α αAαA²α线性无关,所以P可逆
  • A P = A ( α , A α , A ² α ) = ( A α , A ² α , A ³ α ) = ( A α , A ² α , 4 α + 4 A α − A ² α ) = ( α , A α , A ² α ) ( 0 0 4 1 0 4 0 1 − 1 ) = P ( 0 0 4 1 0 4 0 1 − 1 ) = P B AP=A(α,Aα,A²α)=(Aα,A²α,A³α)=(Aα,A²α,4α+4Aα-A²α)=(α,Aα,A²α)\begin{pmatrix} 0 & 0 & 4 \\ 1 & 0 & 4 \\ 0 & 1 & -1 \\ \end{pmatrix}=P\begin{pmatrix} 0 & 0 & 4 \\ 1 & 0 & 4 \\ 0 & 1 & -1 \\ \end{pmatrix}=PB AP=A(αAαA²α)=(AαA²αA³α)=(AαA²α4α+4AαA²α)=(αAαA²α)010001441=P010001441=PB
  • 其中 P B = ( 0 0 4 1 0 4 0 1 − 1 ) PB=\begin{pmatrix} 0 & 0 & 4 \\ 1 & 0 & 4 \\ 0 & 1 & -1 \\ \end{pmatrix} PB=010001441,即 A P = P B AP=PB AP=PB,故 P ⁻ ¹ A P = B P⁻¹AP=B P¹AP=B,即 A ∽ B A\backsim B AB,因为相似矩阵特征值相同,所以A和B特征值相同
  • ∣ λ E − B ∣ = ∣ λ 0 − 4 − 1 λ − 4 0 − 1 λ + 1 ∣ = ( λ + 1 ) ( λ ² − 4 ) = 0 |λE-B|=\begin{vmatrix} λ & 0 & -4 \\ -1 & λ & -4 \\ 0 & -1 & λ+1 \\ \end{vmatrix}=(λ+1)(λ²-4)=0 λEB=λ100λ144λ+1=(λ+1)(λ²4)=0,得A的特征值为 λ 1 = − 2 , λ 2 = − 1 , λ 3 = 2 λ_1=-2,λ_2=-1,λ_3=2 λ1=2λ2=1λ3=2
  • (2) ∣ A ∣ = ( − 2 ) × ( − 1 ) × 2 = 4 |A|=(-2)×(-1)×2=4 A=(2)×(1)×2=4,则 A ∗ A^* A的特征值为 4 − 2 , 4 − 1 , 4 2 \frac{4}{-2},\frac{4}{-1},\frac{4}{2} 241424,即-2,-4,2,从而 A ∗ + 3 E A^*+3E A+3E的特征值为1,-1,5
  • ∣ A ∗ + 3 E ∣ = 1 × ( − 1 ) × 5 = − 5 |A^*+3E|=1×(-1)×5=-5 A+3E=1×(1)×5=5

特征值与特征向量的一般性质:

  1. 设A为n阶矩阵, λ 1 , λ 2 , . . . , λ n λ_1,λ_2,...,λ_n λ1λ2...λn为A的特征值,若 A ∽ B A\backsim B AB,则有 { λ 1 + λ 2 + . . . + λ n = t r ( A ) = t r ( B ) λ 1 ⋅ λ 2 ⋅ . . . ⋅ λ n = ∣ A ∣ = ∣ B ∣ \begin{cases} λ_1+λ_2+...+λ_n=tr(A)=tr(B)\\ λ_1·λ_2·...·λ_n=|A|=|B|\\ \end{cases} {λ1+λ2+...+λn=tr(A)=tr(B)λ1λ2...λn=A=B
  2. 设A为n阶矩阵, λ 0 λ_0 λ0为A的k阶特征值,则 { 若 k = 1 , 即 λ 0 为 单 特 征 值 , 则 属 于 特 征 值 λ 0 的 线 性 无 关 的 特 征 向 量 只 有 一 个 若 k > 1 , 则 属 于 特 征 值 λ 0 的 线 性 无 关 的 特 征 向 量 个 数 不 超 过 k 个 \begin{cases} 若k=1,即λ_0为单特征值,则属于特征值λ_0的线性无关的特征向量只有一个\\ 若k>1,则属于特征值λ_0的线性无关的特征向量个数不超过k个\\ \end{cases} {k=1λ0λ0线k>1λ0线k
  3. 设A为n阶矩阵,且 A α = λ 0 α ( α 为 非 零 向 量 ) , f ( x ) = a n x n + . . . + a 1 x + a 0 Aα=λ_0α(α为非零向量),f(x)=a_nx^n+...+a_1x+a_0 Aα=λ0α(α)f(x)=anxn+...+a1x+a0,令 f ( A ) = a n A n + . . . + a 1 A + a 0 E f(A)=a_nA^n+...+a_1A+a_0E f(A)=anAn+...+a1A+a0E,则 { 若 A 可 逆 , 则 A − 1 α = 1 λ 0 α , 即 1 λ 0 为 A − 1 的 特 征 值 , α 为 A − 1 的 特 征 向 量 若 A 可 逆 , 则 A ∗ α = ∣ A ∣ λ 0 α , 即 ∣ A ∣ λ 0 为 A ∗ 的 特 征 值 , α 为 A ∗ 的 特 征 向 量 f ( A ) α = f ( λ 0 ) α , 即 f ( λ 0 ) 为 f ( A ) 的 特 征 值 , α 为 f ( A ) 的 特 征 解 向 量 \begin{cases} 若A可逆,则A^{-1}α=\frac{1}{λ_0}α,即\frac{1}{λ_0}为A^{-1}的特征值,α为A^{-1}的特征向量\\ 若A可逆,则A^*α=\frac{|A|}{λ_0}α,即\frac{|A|}{λ_0}为A^*的特征值,α为A^*的特征向量\\ f(A)α=f(λ_0)α,即f(λ_0)为f(A)的特征值,α为f(A)的特征解向量 \end{cases} AA1α=λ01αλ01A1αA1AAα=λ0Aαλ0AAαAf(A)α=f(λ0)αf(λ0)f(A)αf(A)
  4. 设A为n阶矩阵,则A的不同特征值对应的特征向量无关
  5. 设A为n阶矩阵,则可相似对角化(或与对角矩阵相似)的充要条件是A有n个线性无关的特征向量
  6. 设A为n阶矩阵, λ 1 , λ 2 λ_1,λ_2 λ1λ2为A的两个不相等的特征值,又 A α = λ 1 α , A β = λ 2 β Aα=λ_1α,Aβ=λ_2β Aα=λ1αAβ=λ2β(α,β为非零向量),对任意的a≠0,b≠0,向量 a α + b β aα+bβ aα+bβ一定不是特征向量

矩阵相似的判断:

{ 设 A , B 为 n 阶 矩 阵 , 所 谓 矩 阵 A , B 相 似 , 即 : 若 存 在 可 逆 矩 阵 P , 使 得 P ⁻ ¹ A P = B , 称 矩 阵 A 与 矩 阵 B 相 似 , 记 为 A ∽ B 判 断 两 个 矩 阵 是 否 相 似 的 步 骤 { 1. 判 断 ∣ λ E − A ∣ = ∣ λ E − B ∣ 是 否 成 立 2. 分 三 种 情 形 讨 论 { 情 形 一 : 设 A , B 都 可 相 似 对 角 化 , 则 A ∽ B 情 形 二 : 若 矩 阵 A 可 相 似 对 角 化 , 矩 阵 B 不 可 相 似 对 角 化 , 则 矩 阵 A 与 矩 阵 B 一 定 不 相 似 情 形 三 : 若 矩 阵 A , B 都 不 可 对 角 化 , 两 矩 阵 不 一 定 相 似 { 若 两 矩 阵 重 根 对 应 的 线 性 无 关 特 征 向 量 个 数 一 致 , 则 相 似 若 重 根 对 应 的 线 性 无 关 的 特 征 向 量 个 数 不 一 致 , 则 不 相 似 \begin{cases} 设A,B为n阶矩阵,所谓矩阵A,B相似,即:若存在可逆矩阵P,使得P⁻¹AP=B,称矩阵A与矩阵B相似,记为A\backsim B\\ 判断两个矩阵是否相似的步骤 \begin{cases} 1. 判断|λE-A|=|λE-B|是否成立\\ 2.分三种情形讨论 \begin{cases} 情形一:设A,B都可相似对角化,则A\backsim B\\ 情形二:若矩阵A可相似对角化,矩阵B不可相似对角化,则矩阵A与矩阵B一定不相似\\ 情形三:若矩阵A,B都不可对角化,两矩阵不一定相似\begin{cases}若两矩阵重根对应的线性无关特征向量个数一致,则相似\\ 若重根对应的线性无关的特征向量个数不一致,则不相似\\ \end{cases} \\ \end{cases} \\ \end{cases} \end{cases} ABnABP使P¹AP=BABAB1.λEA=λEB2.ABABABABAB{线线

例3:

A = ( 1 0 4 0 2 0 1 0 − 2 ) , B = ( 2 0 0 − 1 0 3 4 2 1 ) A=\begin{pmatrix} 1 & 0 & 4 \\ 0 & 2 & 0 \\ 1 & 0 & -2 \\ \end{pmatrix},B=\begin{pmatrix} 2 & 0 & 0 \\ -1 & 0 & 3 \\ 4 & 2 & 1 \\ \end{pmatrix} A=101020402B=214002031,判断A,B是否相似

  • 第一步:判断 ∣ λ E − A ∣ = ∣ λ E − B ∣ |λE-A|=|λE-B| λEA=λEB是否成立
    ∣ λ E − A ∣ = ∣ λ − 1 0 − 4 0 λ − 2 0 − 1 0 λ + 2 ∣ = ( λ + 3 ) ( λ − 2 ) ² = 0 |λE-A|=\begin{vmatrix} λ-1 & 0 & -4 \\ 0 & λ-2 & 0 \\ -1 & 0 & λ+2 \\ \end{vmatrix}=(λ+3)(λ-2)²=0 λEA=λ1010λ2040λ+2=(λ+3)(λ2)²=0得A得特征值为 λ 1 = − 3 , λ 2 = λ 3 = 2 λ_1=-3,λ_2=λ_3=2 λ1=3λ2=λ3=2
    ∣ λ E − B ∣ = ∣ λ − 2 0 0 1 λ − 3 − 4 − 2 λ + 1 ∣ = ( λ + 3 ) ( λ − 2 ) ² = 0 |λE-B|=\begin{vmatrix} λ-2 & 0 & 0 \\ 1 & λ & -3 \\ -4 & -2 & λ+1 \\ \end{vmatrix}=(λ+3)(λ-2)²=0 λEB=λ2140λ203λ+1=(λ+3)(λ2)²=0得B得特征值为 λ 1 = − 3 , λ 2 = λ 3 = 2 λ_1=-3,λ_2=λ_3=2 λ1=3λ2=λ3=2
    (第一步条件成立,A,B不一定相似,继续第二步得判断)
  • 第二步:判断A、B是否可相似对角化
  • 检验矩阵A( λ 1 = − 3 λ_1=-3 λ1=3为单根,不用检验,只需检验重根即 λ 2 = λ 3 = 2 λ_2=λ_3=2 λ2=λ3=2的情况)
    2 E − A = ( 1 0 − 4 0 0 0 − 1 0 4 ) → ( 1 0 − 4 0 0 0 0 0 0 ) 2E-A=\begin{pmatrix} 1 & 0 & -4 \\ 0 & 0 & 0 \\ -1 & 0 & 4 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix} 2EA=101000404100000400 r ( 2 E − A ) = 1 r(2E-A)=1 r(2EA)=1
    (A矩阵为3阶,秩为1,因此有两个线性无关的解向量,与重根对应的线性无关特征向量个数(2个)一致) 则A可相似对角化
  • 检验矩阵B( λ 1 = − 3 λ_1=-3 λ1=3为单根,不用检验,只需检验重根即 λ 2 = λ 3 = 2 λ_2=λ_3=2 λ2=λ3=2的情况)
    2 E − B = ( 0 0 0 1 2 − 3 − 4 − 2 3 ) → ( 1 2 − 3 0 6 − 9 0 0 0 ) 2E-B=\begin{pmatrix} 0 & 0 & 0 \\ 1 & 2 & -3 \\ -4 & -2 & 3 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -3 \\ 0 & 6 & -9 \\ 0 & 0 & 0 \\ \end{pmatrix} 2EB=014022033100260390 r ( 2 E − B ) = 2 r(2E-B)=2 r(2EB)=2
    (B矩阵为3阶,秩为2,因此有一个线性无关的解向量,与重根对应的线性无关特征向量个数(2个)不一致) 则B不可相似对角化
    对应情形二,即矩阵A可相似对角化,矩阵B不可相似对角化,则矩阵A与阵B一定不相似

例4:

A = ( 0 0 1 0 0 0 1 0 0 ) , B = ( 1 0 0 0 1 2 0 − 1 − 2 ) A=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\\ \end{pmatrix},B=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2\\ 0 & -1 & -2 \\ \end{pmatrix} A=001000100B=100011022,证明 A ∽ B A\backsim B AB,且求可逆矩阵P,使得 P − 1 A P = B P^{-1}AP=B P1AP=B

  • 第一步:判断 ∣ λ E − A ∣ = ∣ λ E − B ∣ |λE-A|=|λE-B| λEA=λEB是否成立
    ∣ λ E − A ∣ = ∣ λ 0 − 1 0 λ 0 − 1 0 λ ∣ = λ ( λ ² − 1 ) = 0 |λE-A|=\begin{vmatrix} λ & 0 & -1 \\ 0 & λ & 0 \\ -1 & 0 & λ \\ \end{vmatrix}=λ(λ²-1)=0 λEA=λ010λ010λ=λ(λ²1)=0 得A的特征值为 λ 1 = − 1 , λ 2 = 0 , λ 3 = 1 λ_1=-1,λ_2=0,λ_3=1 λ1=1λ2=0λ3=1
    (A是3阶矩阵,且有3个单根) 得A可相似对角化
    ∣ λ E − B ∣ = ∣ λ − 1 0 0 0 λ − 1 − 2 0 1 λ + 2 ∣ = λ ( λ ² − 1 ) = 0 |λE-B|=\begin{vmatrix} λ-1 & 0 & 0 \\ 0 & λ-1 & -2 \\ 0 & 1 & λ+2 \\ \end{vmatrix}=λ(λ²-1)=0 λEB=λ1000λ1102λ+2=λ(λ²1)=0 得B的特征值为 λ 1 = − 1 , λ 2 = 0 , λ 3 = 1 λ_1=-1,λ_2=0,λ_3=1 λ1=1λ2=0λ3=1
    (B是3阶矩阵,且有3个单根) 得B可相似对角化
    对应情形一,即矩阵A可相似对角化,矩阵B也可相似对角化,则矩阵A与阵B一定相似
  • − E − A = ( − 1 0 − 1 0 − 1 0 − 1 0 − 1 ) → ( 1 0 1 0 1 0 0 0 0 ) -E-A=\begin{pmatrix} -1 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix} EA=101010101100010100 得A属于 λ 1 = − 1 λ_1=-1 λ1=1的线性无关的特征向量为 α 1 = ( − 1 0 1 ) α_1=\begin{pmatrix} -1 \\ 0 \\ 1 \\ \end{pmatrix} α1=101
  • 0 E − A = ( 0 0 − 1 0 0 0 − 1 0 0 ) → ( 1 0 0 0 0 1 0 0 0 ) 0E-A=\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{pmatrix} 0EA=001000100100000010 得A属于 λ 2 = 0 λ_2=0 λ2=0的线性无关的特征向量为 α 2 = ( 0 1 0 ) α_2=\begin{pmatrix} 0 \\ 1 \\ 0 \\ \end{pmatrix} α2=010
  • E − A = ( 1 0 − 1 0 1 0 − 1 0 1 ) → ( 1 0 − 1 0 1 0 0 0 0 ) E-A=\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix} EA=101010101100010100 得A属于 λ 3 = 1 λ_3=1 λ3=1的线性无关的特征向量为 α 3 = ( 1 0 1 ) α_3=\begin{pmatrix} 1 \\ 0 \\ 1 \\ \end{pmatrix} α3=101
    P 1 = ( − 1 0 1 0 1 0 1 0 1 ) P_1=\begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ \end{pmatrix} P1=101010101(将3组列向量组合成一个矩阵),则 P 1 − 1 A P 1 = ( − 1 0 0 0 0 0 0 0 1 ) P_1^{-1}AP_1=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} P11AP1=100000001 (将3个特征值依次放在主对角线上)
  • − E − B = ( − 2 0 0 0 − 2 − 2 0 1 1 ) → ( 1 0 0 0 1 1 0 0 0 ) -E-B=\begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & -2 \\ 0 & 1 & 1 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ \end{pmatrix} EB=200021021100010010 得B属于 λ 1 = − 1 λ_1=-1 λ1=1的线性无关的特征向量为 β 1 = ( 0 − 1 1 ) β_1=\begin{pmatrix} 0 \\ -1 \\ 1 \\ \end{pmatrix} β1=011
  • 0 E − B = ( − 1 0 0 0 − 1 − 2 0 1 2 ) → ( 1 0 0 0 1 2 0 0 0 ) 0E-B=\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & -2 \\ 0 & 1 & 2 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ \end{pmatrix} 0EB=100011022100010020 得B属于 λ 2 = 0 λ_2=0 λ2=0的线性无关的特征向量为 β 2 = ( 0 − 2 1 ) β_2=\begin{pmatrix} 0 \\ -2 \\ 1 \\ \end{pmatrix} β2=021
  • E − B = ( 0 0 0 0 0 − 2 0 1 3 ) → ( 0 1 0 0 0 1 0 0 0 ) E-B=\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 1 & 3 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{pmatrix} EB=000001023000100010 得B属于 λ 3 = 1 λ_3=1 λ3=1的线性无关的特征向量为 β 3 = ( 1 0 0 ) β_3=\begin{pmatrix} 1 \\ 0 \\ 0 \\ \end{pmatrix} β3=100
    P 2 = ( 0 0 1 − 1 − 2 0 1 1 0 ) P_2=\begin{pmatrix} 0 & 0 & 1 \\ -1 & -2 & 0 \\ 1 & 1 & 0 \\ \end{pmatrix} P2=011021100(将3组列向量组合成一个矩阵),则 P 2 − 1 A P 2 = ( − 1 0 0 0 0 0 0 0 1 ) P_2^{-1}AP_2=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} P21AP2=100000001 (将3个特征值依次放在主对角线上)
  • P = P 1 P 2 − 1 = ( − 1 0 1 0 1 0 1 0 1 ) ( 0 1 2 0 − 1 − 1 1 0 0 ) = ( 1 − 1 − 2 0 − 1 − 1 1 1 2 ) P=P_1P_2^{-1}=\begin{pmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ \end{pmatrix}\begin{pmatrix} 0 & 1 & 2 \\ 0 & -1 & -1 \\ 1 & 0 & 0 \\ \end{pmatrix}=\begin{pmatrix} 1 & -1 & -2 \\ 0 & -1 & -1 \\ 1 & 1 & 2 \\ \end{pmatrix} P=P1P21=101010101001110210=101111212 P − 1 A P = B P^{-1}AP=B P1AP=B

非实对称矩阵的对角化:

若A可相似对角化,则具体步骤为:

  • (1)求A的特征值 λ 1 , λ 2 , . . . , λ n λ_1,λ_2,...,λ_n λ1λ2...λn
  • (2)求 ( λ i E − A ) X = 0 ( 1 ≤ i ≤ n ) (λ_iE-A)X=0(1≤i≤n) (λiEA)X=0(1in)的基础解系,从而求出特征值 λ 1 , λ 2 , . . . , λ n λ_1,λ_2,...,λ_n λ1λ2...λn对应的线性无关的特征向量 ξ 1 , ξ 2 , . . . , ξ n ξ_1,ξ_2,...,ξ_n ξ1ξ2...ξn
  • (3)令 P = ( ξ 1 , ξ 2 , . . . , ξ n ) P=(ξ_1,ξ_2,...,ξ_n) P=(ξ1ξ2...ξn),则P可逆,且 P ⁻ ¹ A P = ( λ 1 λ 2 ⋱ λ n ) P⁻¹AP=\begin{pmatrix} λ_1 & & \\ & λ_2 & \\ && \ddots & \\ && & λ_n \\ \end{pmatrix} P¹AP=λ1λ2λn
    注意:非实对称矩阵对角化过程中不可施密特正交化

实对称矩阵的对角化:

实对称矩阵一定可以对角化,具体过程为:

  • (1)求A的特征值 λ 1 , λ 2 , . . . , λ n λ_1,λ_2,...,λ_n λ1λ2...λn(全为实数)
  • (2)求 ( λ i E − A ) X = 0 ( 1 ≤ i ≤ n ) (λ_iE-A)X=0(1≤i≤n) (λiEA)X=0(1in)的基础解系,从而求出特征值 λ 1 , λ 2 , . . . , λ n λ_1,λ_2,...,λ_n λ1λ2...λn对应的线性无关的特征向量 ξ 1 , ξ 2 , . . . , ξ n ξ_1,ξ_2,...,ξ_n ξ1ξ2...ξn(该向量组不同特征值之间的特征向量正交,施密特正交化只需要在同一个特征值内部的特征向量之间进行)
  • (3)若题目只求可逆矩阵P对A进行对角化,则令 P = ( ξ 1 , ξ 2 , . . . , ξ n ) P=(ξ_1,ξ_2,...,ξ_n) P=(ξ1ξ2...ξn),且 P ⁻ ¹ A P = ( λ 1 λ 2 ⋱ λ n ) P⁻¹AP=\begin{pmatrix} λ_1 & & \\ & λ_2 & \\ && \ddots & \\ && & λ_n \\ \end{pmatrix} P¹AP=λ1λ2λn
    若题目求正交矩阵Q对A进行相似对角化,则将 ξ 1 , ξ 2 , . . . , ξ n ξ_1,ξ_2,...,ξ_n ξ1ξ2...ξn施密特正交化和规范化得一组新的两两正交且规范得特征向量组 γ 1 , γ 2 , . . . , γ n γ_1,γ_2,...,γ_n γ1γ2...γn,令 Q = ( γ 1 , γ 2 , . . . , γ n ) Q=(γ_1,γ_2,...,γ_n) Q=(γ1γ2...γn),则Q为正交矩阵,且 Q T A Q = ( λ 1 λ 2 ⋱ λ n ) Q^TAQ=\begin{pmatrix} λ_1 & & \\ & λ_2 & \\ && \ddots & \\ && & λ_n \\ \end{pmatrix} QTAQ=λ1λ2λn
    施密特正交化后的向量仍为A的特征值对应的特征向量

α 1 , α 2 , . . . , α n α_1,α_2,...,α_n α1α2...αn线性无关,施密特正交化过程分两个步骤:

  • 正交化:
    β 1 = α 1 , β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 , . . . , β n = α n − ( α n , β 1 ) ( β 1 , β 1 ) β 1 − ( α n , β 2 ) ( β 2 , β 2 ) β 2 − . . . − ( α n , β n − 1 ) ( β n − 1 , β n − 1 ) β n − 1 β_1=α_1,β_2=α_2-\frac{(α_2,β_1)}{(β_1,β_1)}β_1,...,β_n=α_n-\frac{(α_n,β_1)}{(β_1,β_1)}β_1-\frac{(α_n,β_2)}{(β_2,β_2)}β_2-...-\frac{(α_n,β_{n-1})}{(β_{n-1},β_{n-1})}β_{n-1} β1=α1β2=α2(β1,β1)(α2,β1)β1...βn=αn(β1,β1)(αn,β1)β1(β2,β2)(αn,β2)β2...(βn1,βn1)(αn,βn1)βn1
    β 1 , β 2 , . . . , β n β_1,β_2,...,β_n β1β2...βn两两正交
  • 规范化:
    γ 1 = 1 ∣ β 1 ∣ β 1 , γ 2 = 1 ∣ β 2 ∣ β 2 , . . . , γ n = 1 ∣ β n ∣ β n γ_1=\frac{1}{|β_1|}β_1,γ_2=\frac{1}{|β_2|}β_2,...,γ_n=\frac{1}{|β_n|}β_n γ1=β11β1γ2=β21β2...γn=βn1βn
    γ 1 , γ 2 , . . . , γ n γ_1,γ_2,...,γ_n γ1γ2...γn两两正交且规范

例5:

A = ( 2 − 1 − 1 − 1 2 − 1 − 1 − 1 2 ) A=\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \\ \end{pmatrix} A=211121112,求:
(1)可逆矩阵P,使得 P ⁻ ¹ A P P⁻¹AP P¹AP为对角矩阵
(2)正交矩阵Q,使得 Q T A Q Q^TAQ QTAQ为对角矩阵

(1) ∣ λ E − A ∣ = ∣ λ − 2 1 1 1 λ − 2 1 1 1 λ − 2 ∣ = λ ( λ − 3 ) ² = 0 |λE-A|=\begin{vmatrix} λ-2 & 1 & 1 \\ 1 & λ-2 & 1 \\ 1 & 1 & λ-2 \\ \end{vmatrix}=λ(λ-3)²=0 λEA=λ2111λ2111λ2=λ(λ3)²=0 得A的特征值为 λ 1 = 0 , λ 2 = λ 3 = 3 λ_1=0,λ_2=λ_3=3 λ1=0λ2=λ3=3

  • 0 E − A = ( − 2 1 1 1 − 2 1 1 1 − 2 ) → ( 1 0 − 1 0 1 − 1 0 0 0 ) 0E-A=\begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ \end{pmatrix} 0EA=211121112100010110 λ 1 = 0 λ_1=0 λ1=0对应的线性无关的特征向量为 α 1 = ( 1 1 1 ) α_1=\begin{pmatrix} 1 \\ 1 \\ 1 \\ \end{pmatrix} α1=111
  • 3 E − A = ( 1 1 1 1 1 1 1 1 1 ) → ( 1 1 1 0 0 0 0 0 0 ) 3E-A=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix} 3EA=111111111100100100 λ 2 = λ 3 = 0 λ_2=λ_3=0 λ2=λ3=0对应的线性无关的特征向量为 α 2 = ( − 1 1 0 ) , α 3 = ( − 1 0 1 ) α_2=\begin{pmatrix} -1 \\ 1 \\ 0 \\ \end{pmatrix},α_3=\begin{pmatrix} -1 \\ 0 \\ 1 \\ \end{pmatrix} α2=110α3=101
  • P = ( 1 − 1 − 1 1 1 0 1 0 1 ) P=\begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ \end{pmatrix} P=111110101,则P可逆,且 P ⁻ ¹ A P = ( 0 0 0 0 3 0 0 0 3 ) P⁻¹AP=\begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \\ \end{pmatrix} P¹AP=000030003

(2) β 1 = α 1 = ( 1 1 1 ) β_1=α_1=\begin{pmatrix} 1 \\ 1 \\ 1 \\ \end{pmatrix} β1=α1=111
β 2 = α 2 = ( − 1 1 0 ) , β 3 = α 3 − ( α 2 , β 2 ) ( β 2 , β 2 ) β 2 = 1 2 ( − 1 − 1 2 ) β_2=α_2=\begin{pmatrix} -1 \\ 1 \\ 0 \\ \end{pmatrix},β_3=α_3-\frac{(α_2,β_2)}{(β_2,β_2)}β_2=\frac{1} {2}\begin{pmatrix} -1 \\ -1 \\ 2 \\\end{pmatrix} β2=α2=110β3=α3(β2,β2)(α2,β2)β2=21112
(由于实对称矩阵( a i j = a j i a_{ij}=a_{ji} aij=aji)不同特征值对应得特征向量正交,所以正交化只限于在重特征值对应得线性无关得特征向量内部进行)

  • γ 1 = 1 ∣ β 1 ∣ β 1 = 1 1 ² + 1 ² + 1 ² ( 1 1 1 ) = ( 1 3 1 3 1 3 ) γ_1=\frac{1}{|β_1|}β_1=\frac{1}{\sqrt{1²+1²+1²}}\begin{pmatrix} 1 \\ 1 \\ 1 \\ \end{pmatrix}=\begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \end{pmatrix} γ1=β11β1=1²+1²+1² 1111=3 13 13 1
  • γ 2 = 1 ∣ β 2 ∣ β 2 = 1 ( − 1 ) ² + 1 ² + 0 ² ( − 1 1 0 ) = ( − 1 2 1 2 0 ) γ_2=\frac{1}{|β_2|}β_2=\frac{1}{\sqrt{(-1)²+1²+0²}}\begin{pmatrix} -1 \\ 1 \\ 0 \\ \end{pmatrix}=\begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \\ \end{pmatrix} γ2=β21β2=(1)²+1²+0² 1110=2 12 10
  • γ 3 = 1 ∣ β 3 ∣ β 3 = 1 ( − 1 ) ² + ( − 1 ) ² + 2 ² ( − 1 − 1 2 ) = ( − 1 6 − 1 6 2 6 ) γ_3=\frac{1}{|β_3|}β_3=\frac{1}{\sqrt{(-1)²+(-1)²+2²}}\begin{pmatrix} -1 \\ -1 \\ 2 \\\end{pmatrix}=\begin{pmatrix} -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ \end{pmatrix} γ3=β31β3=(1)²+(1)²+2² 1112=6 16 16 2
  • Q = ( 1 3 − 1 2 − 1 6 1 3 1 2 − 1 6 1 3 0 2 6 ) Q=\begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \end{pmatrix} Q=3 13 13 12 12 106 16 16 2,则Q为正交矩阵,且 Q T A Q = ( 0 0 0 0 3 0 0 0 3 ) Q^TAQ=\begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \\ \end{pmatrix} QTAQ=000030003

A m A^m Am

  • 求矩阵A的幂,除了矩阵部分介绍的方法以外,还有一个最重要的方法,即用特征值与特征向量的方法求矩阵A的幂,具体步骤为:
    (1)求A的特征值 λ 1 , λ 2 , . . . , λ n λ_1,λ_2,...,λ_n λ1λ2...λn
    (2)求 ( λ i E − A ) X = 0 ( 1 ≤ i ≤ n ) (λ_iE-A)X=0(1≤i≤n) (λiEA)X=0(1in)的基础解系,从而求出特征值 λ 1 , λ 2 , . . . , λ n λ_1,λ_2,...,λ_n λ1λ2...λn对应的线性无关的特征向量 ξ 1 , ξ 2 , . . . , ξ n ξ_1,ξ_2,...,ξ_n ξ1ξ2...ξn
    (3)令 P = ( ξ 1 , ξ 2 , . . . , ξ n ) P=(ξ_1,ξ_2,...,ξ_n) P=(ξ1ξ2...ξn),则P可逆,且 P ⁻ ¹ A P = ( λ 1 λ 2 ⋱ λ n ) P⁻¹AP=\begin{pmatrix} λ_1 & & \\ & λ_2 & \\ && \ddots & \\ && & λ_n \\ \end{pmatrix} P¹AP=λ1λ2λn,两边求幂得 A m = P ( λ 1 m λ 2 m ⋱ λ n m ) P ⁻ ¹ A^m=P\begin{pmatrix} λ_1^m & & \\ & λ_2^m & \\ && \ddots & \\ && & λ_n^m \\ \end{pmatrix}P⁻¹ Am=Pλ1mλ2mλnmP¹

例6:

设三阶矩阵A的特征值为 λ 1 = 1 , λ 2 = 2 , λ 3 = 3 λ_1=1,λ_2=2,λ_3=3 λ1=1λ2=2λ3=3,它们对应的特征向量为 ξ 1 = ( 1 1 1 ) , ξ 2 = ( 1 2 4 ) , ξ 3 = ( 1 3 9 ) ξ_1=\begin{pmatrix} 1 \\ 1 \\ 1 \\ \end{pmatrix},ξ_2=\begin{pmatrix} 1 \\ 2 \\ 4 \\ \end{pmatrix},ξ_3=\begin{pmatrix} 1 \\ 3 \\ 9 \\ \end{pmatrix} ξ1=111ξ2=124ξ3=139,又 β = ( 1 1 1 ) β=\begin{pmatrix} 1 \\ 1 \\ 1 \\ \end{pmatrix} β=111,计算 A n β A^nβ Anβ

  • P = ( ξ 1 , ξ 2 , ξ 3 ) = ( 1 1 1 1 2 4 1 3 9 ) P=(ξ_1,ξ_2,ξ_3)=\begin{pmatrix} 1 & 1 & 1\\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ \end{pmatrix} P=(ξ1ξ2ξ3)=111123149,则有 P ⁻ ¹ A P = ( 1 2 3 ) P⁻¹AP=\begin{pmatrix} 1 & & \\ & 2 & \\ & & 3 \\ \end{pmatrix} P¹AP=123,从而 P ⁻ ¹ A n P = ( 1 n 2 n 3 n ) P⁻¹A^nP=\begin{pmatrix} 1^n & & \\ & 2^n & \\ & & 3^n \\ \end{pmatrix} P¹AnP=1n2n3n
    A n = P ( 1 n 2 n 3 n ) A^n=P\begin{pmatrix} 1^n & & \\ & 2^n & \\ & & 3^n \\ \end{pmatrix} An=P1n2n3nP⁻¹,又 P − 1 = 1 2 ( 6 − 5 1 − 6 8 − 2 2 3 − 1 ) P^{-1}=\frac{1}{2}\begin{pmatrix} 6 & -5 & 1\\ -6 & 8 & -2 \\ 2 & 3 & -1 \\ \end{pmatrix} P1=21662583121,所以 A n β = P ( 1 n 2 n 3 n ) A^nβ=P\begin{pmatrix} 1^n & & \\ & 2^n & \\ & & 3^n \\ \end{pmatrix} Anβ=P1n2n3n P ⁻ ¹ β = ( 2 − 2 n + 1 + 3 n 2 − 2 n + 2 + 3 n + 1 2 − 2 n + 3 + 3 n + 2 ) P⁻¹β=\begin{pmatrix} 2-2^{n+1}+3^n\\ 2-2^{n+2}+3^{n+1}\\ 2-2^{n+3}+3^{n+2}\\ \end{pmatrix} P¹β=22n+1+3n22n+2+3n+122n+3+3n+2
  • 第六章 二次型:

基本概念:

  • 二次型: 含n个变量 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1x2...xn且每项都是2次的齐次多项式 f ( x 1 , x 2 , . . . , x n ) = a 11 x 1 2 + a 22 x 2 2 + . . . + a n n x n 2 + 2 a 12 x 1 x 2 + . . . + 2 a 1 n x 1 x n + 2 a 23 x 2 x 3 + . . . + 2 a n − 1 , n x n − 1 x n f(x_1,x_2,...,x_n)=a_{11}x_1^2+a_{22}x_2^2+...+a_{nn}x_n^2+2a_{12}x_1x_2+...+2a_{1n}x_1x_n+2a_{23}x_2x_3+...+2a_{n-1,n}x_{n-1}x_n f(x1x2...xn)=a11x12+a22x22+...+annxn2+2a12x1x2+...+2a1nx1xn+2a23x2x3+...+2an1,nxn1xn,称为二次型,若令 a i j = a j i ( i , j = 1 , 2 , . . . , n ) a_{ij}=a_{ji}(i,j=1,2,...,n) aij=aji(ij=12...n),则二次型的矩阵形式为 f ( x 1 , x 2 , . . . , x n ) = X T A X f(x_1,x_2,...,x_n)=X^TAX f(x1x2...xn)=XTAX,其中 A = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ , X = ( x 1 x 2 ⋮ x n ) A=\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} &\cdots & a_{2n} \\ \vdots & \vdots &\ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} ,X=\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} A=a11a21an1a12a22an2a1na2nannX=x1x2xn
  • 标准二次型: 只含有平方项不含交叉项的二次型
  • 二次型的标准化:设 f ( X ) = X T A X f(X)=X^TAX f(X)=XTAX为一个二次型,经过可逆的线性变换X=PY(即P为可逆矩阵)把二次型 f ( X ) = X T A X f(X)=X^TAX f(X)=XTAX化为 f ( X ) = X T A X ⟹ X = P Y ( P Y ) T A P Y , 即 Y T ( P T A P ) Y = l 1 y 1 2 + l 2 y 2 2 + . . . + l m y m 2 f(X)=X^TAX \overset{X=PY}\Longrightarrow (PY)^TAPY,即Y^T(P^TAP)Y=l_1y_1^2+l_2y_2^2+...+l_my_m^2 f(X)=XTAXX=PY(PY)TAPYYT(PTAP)Y=l1y12+l2y22+...+lmym2,称为二次型的标准化
  • 对二次型 f ( x 1 , x 2 , . . . , x n ) = X T A X ( A T = A ) f(x_1,x_2,...,x_n)=X^TAX(A^T=A) f(x1x2...xn)=XTAX(AT=A),一定存在正交矩阵Q,使得 X T A X ⟹ X = Q Y ( Q Y ) T A Q Y , 即 Y T ( Q T A Q ) Y = λ 1 y 1 2 + λ 2 y 2 2 + . . . + λ n y n 2 X^TAX \overset{X=QY}\Longrightarrow (QY)^TAQY,即Y^T(Q^TAQ)Y=λ_1y_1^2+λ_2y_2^2+...+λ_ny_n^2 XTAXX=QY(QY)TAQYYT(QTAQ)Y=λ1y12+λ2y22+...+λnyn2,其中 λ 1 , λ 2 , . . . , λ n λ_1,λ_2,...,λ_n λ1λ2...λn为矩阵A的特征值
  • 正定二次型: 对二次型 f ( x 1 , x 2 , . . . , x n ) = X T A X f(x_1,x_2,...,x_n)=X^TAX f(x1x2...xn)=XTAX,若对任意的 X ≠ 0 X≠0 X=0,总有 X T A X > 0 X^TAX>0 XTAX>0,称 X T A X X^TAX XTAX为正定二次型,A称为正定矩阵
    正定二次型的判别:
    ①二次型 X T A X X^TAX XTAX为正定二次型的充要条件是A的特征值全为正数
    ②二次型 X T A X X^TAX XTAX为正定二次型的充要条件是A的顺序主子式都大于零
    ③设 A T = A A^T=A AT=A,则A为正定矩阵的充要条件是存在可逆矩阵B,使得 A = B T B A=B^TB A=BTB
    ④设 A T = A A^T=A AT=A,则A为正定矩阵的充要条件是A与E合同
    ⑤设 A T = A A^T=A AT=A,则A为正定的充要条件是A的正惯性指数为n
    ⑥设A,B分别为m和n阶实对称矩阵,则 ( A O O B ) \begin{pmatrix} A & O\\ O & B \\ \end{pmatrix} (AOOB)为正定矩阵的充要条件是A,B都是正定矩阵
  • 二次型 f ( X ) = X T A X f(X)=X^TAX f(X)=XTAX正定的必要条件是: a i i > 0 ( i = 1 , 2 , . . . , n ) a_{ii}>0(i=1,2,...,n) aii>0(i=12...n);|A|>0
  • 若A是正定矩阵,则A一定是可逆矩阵
  • 若A是正定矩阵,则 A − 1 A^{-1} A1 A ∗ A^* A是正定矩阵
  • 若A,B都是正定矩阵,则A+B是正定矩阵

二次型的标准形:

例1:

设二次型 f ( x 1 , x 2 , x 3 ) = x 1 2 + x 2 2 + x 3 2 + 4 x 1 x 2 + 4 x 1 x 3 + 4 x 2 x 3 f(x_1,x_2,x_3)=x_1^2+x_2^2+x_3^2+4x_1x_2+4x_1x_3+4x_2x_3 f(x1x2x3)=x12+x22+x32+4x1x2+4x1x3+4x2x3
(1)用配方法化二次型为标准形
(2)用正交变换法化二次型为标准形

  • (1) 第一步: 矩阵化 A = ( 1 2 2 2 1 2 2 2 1 ) A=\begin{pmatrix} 1 & 2 & 2\\ 2 & 1 & 2 \\ 2 & 2 & 1 \\ \end{pmatrix} A=122212221 f ( X ) = X T A X f(X)=X^TAX f(X)=XTAX
    第二步: 配方 f ( x 1 , x 2 , x 3 ) = x 1 2 + x 2 2 + x 3 2 + 4 x 1 x 2 + 4 x 1 x 3 + 4 x 2 x 3 = ( x 1 + 2 x 2 + 2 x 3 ) 2 − 3 ( x 2 + 2 3 x 3 ) 2 − 5 3 x 3 2 f(x_1,x_2,x_3)=x_1^2+x_2^2+x_3^2+4x_1x_2+4x_1x_3+4x_2x_3=(x_1+2x_2+2x_3)^2-3(x_2+\frac{2}{3}x_3)^2-\frac{5}{3}x_3^2 f(x1x2x3)=x12+x22+x32+4x1x2+4x1x3+4x2x3=(x1+2x2+2x3)23(x2+32x3)235x32
    第三步: { x 1 + 2 x 2 + 2 x 3 = y 1 x 2 + 2 3 x 3 = y 2 x 3 = y 3 → { x 1 = y 1 − 2 y 2 − 2 3 y 3 x 2 = y 2 − 2 3 y 3 x 3 = y 3 \begin{cases}x_1+2x_2+2x_3=y_1\\ x_2+\frac{2}{3}x_3=y_2\\ x_3=y_3\\ \end{cases} \rightarrow \begin{cases}x_1=y_1-2y_2-\frac{2}{3}y_3\\ x_2=y_2-\frac{2}{3}y_3\\ x_3=y_3\\ \end{cases} x1+2x2+2x3=y1x2+32x3=y2x3=y3x1=y12y232y3x2=y232y3x3=y3,即X=PY,其中 P = ( 1 − 2 2 3 0 1 − 2 3 0 0 1 ) ≠ 0 P=\begin{pmatrix} 1 & -2 & \frac{2}{3}\\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 \\ \end{pmatrix}≠0 P=10021032321=0,则P可逆
    第四步: f ( X ) = X T A X ⟹ X = P Y Y T ( P T A P ) Y = y 1 2 − 3 y 2 2 − 5 3 y 3 2 f(X)=X^TAX\overset{X=PY}\Longrightarrow Y^T(P^TAP)Y=y_1^2-3y_2^2-\frac{5}{3}y_3^2 f(X)=XTAXX=PYYT(PTAP)Y=y123y2235y32

(2) 第一步:求出矩阵A的特征值 $$
∣ λ E − A ∣ = ∣ λ − 1 − 2 − 2 − 2 λ − 1 − 2 − 2 − 2 λ − 1 ∣ = ( λ + 1 ) ² ( λ − 5 ) = 0 |λE-A|=\begin{vmatrix} λ-1 & -2 & -2 \\ -2 & λ-1 & -2 \\ -2 & -2 & λ-1 \\ \end{vmatrix}=(λ+1)²(λ-5)=0 λEA=λ1222λ1222λ1=(λ+1)²(λ5)=0 得A的特征值为 λ 1 = λ 2 = − 1 , λ 3 = 5 λ_1=λ_2=-1,λ_3=5 λ1=λ2=1λ3=5
第二步:求出矩阵A的线性无关的特征向量

  • − E − A = ( − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 ) → ( 1 1 1 0 0 0 0 0 0 ) -E-A=\begin{pmatrix} -2 & -2 & -2 \\ -2 & -2 & -2 \\ -2 & -2 & -2 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix} EA=222222222100100100 λ 1 = λ 2 = − 1 λ_1=λ_2=-1 λ1=λ2=1对应的线性无关的特征向量为 α 1 = ( − 1 1 0 ) , α 2 = ( − 1 0 1 ) α_1=\begin{pmatrix} -1 \\ 1 \\ 0 \\ \end{pmatrix},α_2=\begin{pmatrix} -1 \\ 0 \\ 1 \\ \end{pmatrix} α1=110α2=101
  • 3 E − A = ( 4 − 2 − 2 − 2 4 − 2 − 2 − 2 4 ) → ( 1 0 − 1 0 1 − 1 0 0 0 ) 3E-A=\begin{pmatrix} 4 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 4 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ \end{pmatrix} 3EA=422242224100010110 λ 3 = 5 λ_3=5 λ3=5对应的线性无关的特征向量为 α 3 = ( 1 1 1 ) α_3=\begin{pmatrix} 1 \\ 1 \\ 1 \\ \end{pmatrix} α3=111
    第三步: 正交化: β 1 = α 1 = ( − 1 1 0 ) , β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 = 1 2 ( − 1 − 1 2 ) , β 3 = α 3 = ( 1 1 1 ) β_1=α_1=\begin{pmatrix} -1 \\ 1 \\ 0 \\ \end{pmatrix},β_2=α_2-\frac{(α_2,β_1)}{(β_1,β_1)}β_1=\frac{1}{2}\begin{pmatrix} -1 \\ -1 \\ 2 \\ \end{pmatrix},β_3=α_3=\begin{pmatrix} 1 \\ 1 \\ 1 \\ \end{pmatrix} β1=α1=110β2=α2(β1,β1)(α2,β1)β1=21112β3=α3=111
    规范化: γ 1 = 1 ∣ β 1 ∣ β 1 = 1 ( − 1 ) ² + 1 ² + 0 ² ( − 1 1 0 ) = ( − 1 2 1 2 0 ) γ_1=\frac{1}{|β_1|}β_1=\frac{1}{\sqrt{(-1)²+1²+0²}}\begin{pmatrix} -1 \\ 1 \\ 0 \\ \end{pmatrix}=\begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \\ \end{pmatrix} γ1=β11β1=(1)²+1²+0² 1110=2 12 10
  • γ 2 = 1 ∣ β 2 ∣ β 2 = 1 ( − 1 ) ² + ( − 1 ) ² + 2 ² ( − 1 − 1 2 ) = ( − 1 6 − 1 6 2 6 ) γ_2=\frac{1}{|β_2|}β_2=\frac{1}{\sqrt{(-1)²+(-1)²+2²}}\begin{pmatrix} -1 \\ -1 \\ 2 \\ \end{pmatrix}=\begin{pmatrix} -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ \end{pmatrix} γ2=β21β2=(1)²+(1)²+2² 1112=6 16 16 2
  • γ 3 = 1 ∣ β 3 ∣ β 3 = 1 1 ² + 1 ² + 1 ² ( 1 1 1 ) = ( 1 3 1 3 1 3 ) γ_3=\frac{1}{|β_3|}β_3=\frac{1}{\sqrt{1²+1²+1²}}\begin{pmatrix} 1 \\ 1 \\ 1 \\\end{pmatrix}=\begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \end{pmatrix} γ3=β31β3=1²+1²+1² 1111=3 13 13 1
    第四步: Q = ( − 1 2 − 1 6 1 3 1 2 − 1 6 1 3 0 1 6 1 3 ) Q=\begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \end{pmatrix} Q=2 12 106 16 16 13 13 13 1,则Q为正交矩阵,且 Q T A Q = ( − 1 0 0 0 − 1 0 0 0 5 ) Q^TAQ=\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 5 \\ \end{pmatrix} QTAQ=100010005
    第五步: 作正交变换X=QY,二次型为 f = − y 1 2 − y 2 2 + 5 y 3 2 f=-y_1^2-y_2^2+5y_3^2 f=y12y22+5y32
  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值