今天开始刷《统计学习基础》(第二版) 这本书,英文名为 The Elements of Statistical Learning (Version II)
原文链接:https://web.stanford.edu/~hastie/ElemStatLearn/
之前听很多朋友、老师推荐过,说这本书是机器学习的基础,同时也看到某些网友回复 " 一点都不基础,教材中有大量艰深的统计推断、矩阵、数值算法、凸优化等数学知识" , em... 我决定先啃起来再说。
因为不是统计学专业出身,所以找了豆瓣网友Chen_1st的评价,权当引子。
“ 这本书对当前最为流行的方法有比较全面深入的介绍,对工程人员参考价值也许要更大一点。另一方面,它不仅总结了已经成熟了的一些技术,而且对尚在发展中的一些议题也有简明扼要的论述。
这本书的作者是Boosting方法最活跃的几个研究人员,发明的 Gradient Boosting 提出了理解Boosting方法的新角度,极大扩展了Boosting方法的应用范围。书中Boosting部分是被相关学术论文引用最频繁的部分。个人觉得经常研读一下作者和其他Boosting流派打嘴仗的文章是学习机器学习很好的一个途径,因为只有这样尚未成熟 (而又影响广泛) 的领域中,你才能更具体地体会到一个学科是怎样逐渐发展成熟的,那些贡献卓著的研究人员是如何天才地发现问题解决问题的,又是如何因偏执而终究会被证明有一方至少是部分地无知的。这种体会是很难在那些发展成熟了的分支中找到的。Regularization方法是作者贡献丰富的另一个领域,也是这本书另一个最具趣味的部分。”
那么,作者认为谁应该读读这本书:
这本书是为了许多领域的研究者和学生设计的,这些领域包括统计、人工智能、工程、金融以及其他。我们预期读者至少学过统计的一门基础课程,掌握包括线性回归等基本概念。
我们没有试图写一篇全面的关于学习方法的目录,而是描述一些很重要的技巧。同样值得说明的是,我们描述根本的概念和用于研究者评判学习方法需要考虑的因素。我们试图从一个直观的角度来写这本书,强调概念而不是数学细节。
接下来,看看这本书的组织结构是怎样的:
作者认为一个人在尝试掌握复杂的概念前必须理解简单的方法。因此,当在第二章对监督学习给出概要后,我们在第三和第四章讨论了回归和分类的线性方法。第五章我们描述了对单个自变量的样条,小波和正则/惩罚方法,第六章则描述了核方法和局部回归。上述两种方法都是高维学习技术的重要基石。模型评估与选择是第七章的主题,包括偏差和方差,过拟合和用于选择模型用的交叉验证。第八章讨论了模型推断与平均,概要地介绍了极大似然法、贝叶斯推断、自助法、EM算法、吉布斯抽样和bagging。与此相关的boosting过程是第十章的重点。在第九到十三章我们描述了一系列用于监督学习的结构化方法,其中第九和第十一章介绍回归,第十二和第十三章的重点在分类。第十四章描述了非监督学习的方法。两个最近提出来的技术,随机森林和集成学习将在第十五和第十六章讨论。第十七章讨论了无向图模型,第十八章学习了高维问题。
好了,简介完毕,明天正式开刷。
------------------------------------------------------------------------------------
附上第二版的书目(标“新”的部分是相对第一版添加的内容)
- 第一章:导言
- 第二章:监督学习的综述
- 第三章:回归的线性方法(新:LAR算法和lasso的一般化)
- 第四章:分类的线性方法(新:逻辑斯蒂回归的lasso轨迹)
- 第五章:基本的扩展和正则化(新:RKHS的补充说明)RKHS(再生核希尔伯特空间)
- 第六章:核光滑方法
- 第七章:模型评估与选择(新:交叉验证的长处与陷阱)
- 第八章:模型推论与平均
- 第九章:补充的模型、树以及相关的方法
- 第十章:Boosting和Additive Trees(新:生态学的新例子,一些材料分到了16章)
- 第十一章:神经网络(新:贝叶斯神经网络和2003年神经信息处理系统进展大会(NIPS)的挑战)
- 第十二章:支持向量机和灵活的判别式(新:SVM分类器的路径算法)
- 第十三章:原型方法和邻近算法
- 第十四章:非监督学习(新:谱聚类,核PCA,离散PCA,非负矩阵分解原型分析,非线性降维,谷歌pagerank算法,ICA的一个直接方法)
- 第十五章:随机森林
- 第十六章:实例学习
- 第十七章:无向图模型
- 第十八章:高维问题
参考: