第一,先标注图像,(精灵标注,略)
附一个将标注坐标在原图上画出的小脚本
# -*- coding: utf-8 -*-
#目标图像检测 之 将标注的图像坐标提取,并在原图上画出来
import xml.etree.ElementTree as ET
import os
import cv2
xml_file='D:/AAAAA/4T/outputs/4T_110.xml'
tree=ET.parse(xml_file)
root=tree.getroot()
imgfile='D:/AAAAA/4T/4T_110.jpg'
im = cv2.imread(imgfile)
for i in range(1):
for object in root.findall('object'):
object_name=object.find('name').text
Xmin=int(object.find('bndbox').find('xmin').text)
Ymin=int(object.find('bndbox').find('ymin').text)
Xmax=int(object.find('bndbox').find('xmax').text)
Ymax=int(object.find('bndbox').find('ymax').text)
color = (4, 250, 7)
cv2.rectangle(im,(Xmin,Ymin),(Xmax,Ymax),color,2)
print((Xmin,Ymin),(Xmax,Ymax))
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(im, object_name, (Xmin,Ymin - 7), font, 0.5, (6, 230, 230), 2)
cv2.imshow('01',im)
cv2.waitKey(0)
#cv2.imwrite('02.jpg', im)
第二,将xml格式转换成csv格式
#tf2.0 目标检测之 VOC xml格式转 CSV
import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET
os.chdir('D:\\AAAAA\\test')
path = 'D:\\AAAAA\\test' #xml地址
def xml_to_csv(path):
xml_list = []
for xml_file in glob.glob(path + '/*.xml'):
tree = ET.parse(xml_file)
root = tree.getroot()
for member in root.findall('object'):
print(type(member))
value = (root.find('filename').text,
int(root.find('size')[0].text),
int(root.find('size')[1].text),
member[0].text,
int(member[4][0].text),
int(member[4][1].text),
int(member[4][2].text),
int(member[4][3].text)
)
xml_list.append(value)
column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
xml_df = pd.DataFrame(xml_list, columns=column_name)
return xml_df
def main():
image_path = path
xml_df = xml_to_csv(image_path)
xml_df.to_csv('test.csv', index=None)
print('Successfully converted xml to csv.')
main()
第三、将csv转成TFrecord格式(test和train分别执行)
#tf2.0目标检测之csv 2 Tfrecord
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
import os
import io
import pandas as pd
from PIL import Image
from collections import namedtuple
import tensorflow as tf
# CSV文件的位置
csv_input = 'D:/AAAAA/xml_csv_tfrecord/train.csv'
# TFRecords的输出位置及文件名
output_path = 'D:/AAAAA/xml_csv_tfrecord/train.record'
# 图像数据的位置
image_dir = 'D:/AAAAA/trainImage/'
def class_text_to_int(row_label):
if row_label == 'T':
return 0
elif row_label == '1':
return 1
elif row_label == '2':
return 2
elif row_label == '3':
return 3
elif row_label == '4':
return 4
elif row_label == '5':
return 5
elif row_label == '6':
return 6
elif row_label == '7':
return 7
elif row_label == '8':
return 8
elif row_label == '9':
return 9
else:
None
def split(df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
def create_tf_example(group, path):
with tf.io.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
width, height = image.size
filename = group.filename.encode('utf8')
image_format = b'jpg'
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = []
for index, row in group.object.iterrows():
xmins.append(row['xmin'] / width)
xmaxs.append(row['xmax'] / width)
ymins.append(row['ymin'] / height)
ymaxs.append(row['ymax'] / height)
classes_text.append(row['class'].encode('utf8'))
classes.append(class_text_to_int(row['class']))
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': tf.train.Feature(int64_list=tf.train.Int64List(value=[height])),
'image/width': tf.train.Feature(int64_list=tf.train.Int64List(value=[width])),
'image/filename':tf.train.Feature(bytes_list=tf.train.BytesList(value=[filename])),
'image/source_id': tf.train.Feature(bytes_list=tf.train.BytesList(value=[filename])),
'image/encoded': tf.train.Feature(bytes_list=tf.train.BytesList(value=[encoded_jpg])),
'image/format': tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_format])),
'image/object/bbox/xmin': tf.train.Feature(float_list=tf.train.FloatList(value=xmins)),
'image/object/bbox/xmax': tf.train.Feature(float_list=tf.train.FloatList(value=xmaxs)),
'image/object/bbox/ymin': tf.train.Feature(float_list=tf.train.FloatList(value=ymins)),
'image/object/bbox/ymax':tf.train.Feature(float_list=tf.train.FloatList(value=ymaxs)),
'image/object/class/text': tf.train.Feature(bytes_list=tf.train.BytesList(value=classes_text)),
'image/object/class/label': tf.train.Feature(int64_list=tf.train.Int64List(value=classes)),
}))
return tf_example
def main():
writer = tf.io.TFRecordWriter(output_path)
path = os.path.join(os.getcwd(), image_dir)
examples = pd.read_csv(csv_input)
grouped = split(examples, 'filename')
for group in grouped:
tf_example = create_tf_example(group, path)
writer.write(tf_example.SerializeToString())
writer.close()
if __name__ == '__main__':
main()
到这里会得到test.tfrecord和train.tfrecord两个tensorflow格式的文件。接下就可以进行读取和训练了。