间接平差求解七参数模型

1.前言

如前所述,本文主要介绍七参数求解的间接平差方法。本文的七参数模型如式(1)所示:
[ X Y Z ] s = k ∗ [ 1 0 0 0 c o s a − s i n a 0 s i n a c o s a ] [ c o s b 0 s i n b 0 1 0 − s i n b 0 c o s b ] [ c o s c − s i n c 0 s i n c c o s c 0 0 0 1 ] [ X Y Z ] o + [ T x T y T z ] (1) \begin{bmatrix}X \\Y \\ Z\end{bmatrix} _s=k*\begin{bmatrix}1&0 &0 \\0&cosa&-sina \\ 0&sina&cosa\end{bmatrix}\begin{bmatrix}cosb&0 &sinb\\0&1&0 \\ -sinb&0&cosb\end{bmatrix}\begin{bmatrix}cosc& -sinc&0 \\sinc&cosc&0 \\ 0&0&1\end{bmatrix}\begin{bmatrix}X \\ Y \\Z \end{bmatrix}_o+\begin{bmatrix} Tx \\ Ty \\Tz \end{bmatrix}\tag{1} XYZs=k1000cosasina0sinacosacosb0sinb010sinb0cosbcoscsinc0sinccosc0001XYZo+TxTyTz(1)

2. 平差函数模型

对式(1)进行简化,另
R = [ 1 0 0 0 c o s a − s i n a 0 s i n a c o s a ] [ c o s b 0 s i n b 0 1 0 − s i n b 0 c o s b ] [ c o s c − s i n c 0 s i n c c o s c 0 0 0 1 ] (2) R=\begin{bmatrix}1&0 &0 \\0&cosa&-sina \\ 0&sina&cosa\end{bmatrix}\begin{bmatrix}cosb&0 &sinb\\0&1&0 \\ -sinb&0&cosb\end{bmatrix}\begin{bmatrix}cosc& -sinc&0 \\sinc&cosc&0 \\ 0&0&1\end{bmatrix}\tag{2} R=1000cosasina0sinacosacosb0sinb010sinb0cosbcoscsinc0sinccosc0001(2)
则式(1)可化为:
[ X Y Z ] s = k ∗ R [ X Y Z ] o + [ T x T y T z ] (3) \begin{bmatrix}X \\Y \\ Z\end{bmatrix} _s=k*R\begin{bmatrix}X \\ Y \\Z \end{bmatrix}_o+\begin{bmatrix} Tx \\ Ty \\Tz \end{bmatrix}\tag{3} XYZs=kRXYZo+TxTyTz(3)
对其进行一阶泰勒展开,有
[ V x V y V z ] s + [ X Y Z ] s = k 0 ∗ R 0 [ X 0 Y 0 Z 0 ] o + [ T x 0 T y 0 T z 0 ] + R 0 [ X 0 Y 0 Z 0 ] o ∗ d k + k 0 ∗ d R [ X 0 Y 0 Z 0 ] o + [ d T x d T y d T z ] (4) \begin{bmatrix}V_x \\V_y \\ V_z\end{bmatrix} _s+ \begin{bmatrix}X \\Y \\ Z\end{bmatrix} _s=k^0*R^0\begin{bmatrix}X^0 \\ Y^0 \\Z ^0\end{bmatrix}_o+\begin{bmatrix} Tx^0 \\ Ty^0 \\Tz^0\end{bmatrix}+R^0\begin{bmatrix}X^0 \\ Y^0 \\Z ^0\end{bmatrix}_o*dk+k^0*dR\begin{bmatrix}X^0 \\ Y^0 \\Z ^0\end{bmatrix}_o+\begin{bmatrix} d_Tx \\ d_Ty \\d_Tz \end{bmatrix}\tag{4} VxVyVzs+XYZs=k0R0X0Y0Z0o+Tx0Ty0Tz0+R0X0Y0Z0odk+k0dRX0Y0Z0o+dTxdTydTz(4)

3. 代码形式

将式(4)化为参数方程,则有
v = B x − l (5) v=Bx-l\tag{5} v=Bxl(5)
的形式。式中,B、x、l的具体形式比较复杂,代码如下所示:

def makeBL(X,S1,S2):           #S1向S2转换。X中的旋转参数为角度,以度为单位
    # a,b,c为三轴的角度,以弧度为单位;Tx,Ty,Tz为平移量,k为缩放系数
    Tx,Ty,Tz,a,b,c,k=X[0,0],X[1,0],X[2,0],X[3,0]*np.pi/180,X[4,0]*np.pi/180,X[5,0]*np.pi/180,X[6,0]
    # Tx = np.mean(S2,0)[0]-np.mean(S1,0)[0]
    # Ty = np.mean(S2,0)[1]-np.mean(S1,0)[1]
    # Tz = np.mean(S2,0)[2]-np.mean(S1,0)[2]
    m=np.size(S1,0)# 判断公共点的个数
    B=np.zeros([3*m,7])
    L=np.zeros([3*m,1])
    for i in range(m):
        B[3*i,0],B[3*i+1,1],B[3*i+2,2] = 1,1,1
        # M部分
        B[3*i,3]=0
        B[3*i,4]=(-np.sin(b)*np.cos(c))*S1[i,0]+(np.sin(b)*np.sin(c))*S1[i,1]+(np.cos(b))*S1[i,2]
        B[3*i,5]=(-np.cos(b)*np.sin(c))*S1[i,0]-(np.cos(b)*np.cos(c))*S1[i,1]
        B[3*i+1,3]=(-np.sin(a)*np.sin(c)+np.cos(a)*np.sin(b)*np.cos(c))*S1[i,0]+(-np.sin(a)*np.cos(c)-np.cos(a)*np.sin(b)*np.sin(c))*S1[i,1]+(-np.cos(a)*np.cos(b))*S1[i,2]
        B[3*i+1,4]=(np.sin(a)*np.cos(b)*np.cos(c))*S1[i,0]+(-np.sin(a)*np.cos(b)*np.sin(c))*S1[i,1]+(np.sin(a)*np.sin(b))*S1[i,2]
        B[3*i+1,5]=(np.cos(a)*np.cos(c)-np.sin(a)*np.sin(b)*np.sin(c))*S1[i,0]+(-np.cos(a)*np.sin(c)-np.sin(a)*np.sin(b)*np.cos(c))*S1[i,1]
        B[3*i+2,3]=(np.cos(a)*np.sin(c)+np.sin(a)*np.sin(b)*np.cos(c))*S1[i,0]+(np.cos(a)*np.cos(c)-np.sin(a)*np.sin(b)*np.sin(c))*S1[i,1]+(-np.sin(a)*np.cos(b))*S1[i,2]
        B[3*i+2,4]=(-np.cos(a)*np.cos(b)*np.cos(c))*S1[i,0]+(np.cos(a)*np.cos(b)*np.sin(c))*S1[i,1]+(-np.cos(a)*np.sin(b))*S1[i,2]
        B[3*i+2,5]=(np.sin(a)*np.cos(c)+np.cos(a)*np.sin(b)*np.sin(c))*S1[i,0]+(-np.sin(a)*np.sin(c)+np.cos(a)*np.sin(b)*np.cos(c))*S1[i,1]
        B[3*i:3*i+3,3:6]=B[3*i:3*i+3,3:6]*k
        #N部分
        D=RR(X[3,0],X[4,0],X[5,0])
        B[3*i,6]=D[0,0]*S1[i,0]+D[0,1]*S1[i,1]+D[0,2]*S1[i,2]
        B[3*i+1,6]=D[1,0]*S1[i,0]+D[1,1]*S1[i,1]+D[1,2]*S1[i,2]
        B[3*i+2,6]=D[2,0]*S1[i,0]+D[2,1]*S1[i,1]+D[2,2]*S1[i,2]
        #L部分
        L[3*i,0]=-(Tx+k*B[3*i,6]-S2[i,0])
        L[3*i+1,0]=-(Ty+k*B[3*i+1,6]-S2[i,1])
        L[3*i+2,0]=-(Tz+k*B[3*i+2,6]-S2[i,2])
        
        B=np.matrix(B)
        L=np.matrix(L)
    return B,L

 # a,b,c为三轴的角度,以弧度为单位;Tx,Ty,Tz为平移量,k为缩放系数
    Tx,Ty,Tz,a,b,c,k=X[0,0],X[1,0],X[2,0],X[3,0]*np.pi/180,X[4,0]*np.pi/180,X[5,0]*np.pi/180,X[6,0]

4. 完整代码

基于Python,已经将这个算法写成了函数,只要输入公点的两套坐标,即可实现坐标转换参数的求解。具体的代码为

def RR(A,B,C):  # A,B,C为角度,旋转矩阵R的定义
        a,b,c=A*np.pi/180, B*np.pi/180, C*np.pi/180
        RR=np.zeros([3,3])  
        RR[0,0]=np.cos(b)*np.cos(c)
        RR[0,1]=-np.cos(b)*np.sin(c)
        RR[0,2]=np.sin(b)   
        RR[1,0]=np.cos(a)*np.sin(c)+np.sin(a)*np.sin(b)*np.cos(c)
        RR[1,1]=np.cos(a)*np.cos(c)-np.sin(a)*np.sin(b)*np.sin(c)
        RR[1,2]=-np.sin(a)*np.cos(b)   
        RR[2,0]=np.sin(a)*np.sin(c)-np.cos(a)*np.sin(b)*np.cos(c)
        RR[2,1]=np.sin(a)*np.cos(c)+np.cos(a)*np.sin(b)*np.sin(c)
        RR[2,2]=np.cos(a)*np.cos(b)
        return RR

def makeBL(X,S1,S2):           #S1向S2转换。X中的旋转参数为角度,以度为单位
    # a,b,c为三轴的角度,以弧度为单位;Tx,Ty,Tz为平移量,k为缩放系数
    Tx,Ty,Tz,a,b,c,k=X[0,0],X[1,0],X[2,0],X[3,0]*np.pi/180,X[4,0]*np.pi/180,X[5,0]*np.pi/180,X[6,0]
    
    m=np.size(S1,0)# 判断公共点的个数
    B=np.zeros([3*m,7])
    L=np.zeros([3*m,1])
    for i in range(m):
        B[3*i,0],B[3*i+1,1],B[3*i+2,2] = 1,1,1
        # M部分
        B[3*i,3]=0
        B[3*i,4]=(-np.sin(b)*np.cos(c))*S1[i,0]+(np.sin(b)*np.sin(c))*S1[i,1]+(np.cos(b))*S1[i,2]
        B[3*i,5]=(-np.cos(b)*np.sin(c))*S1[i,0]-(np.cos(b)*np.cos(c))*S1[i,1]
        B[3*i+1,3]=(-np.sin(a)*np.sin(c)+np.cos(a)*np.sin(b)*np.cos(c))*S1[i,0]+(-np.sin(a)*np.cos(c)-np.cos(a)*np.sin(b)*np.sin(c))*S1[i,1]+(-np.cos(a)*np.cos(b))*S1[i,2]
        B[3*i+1,4]=(np.sin(a)*np.cos(b)*np.cos(c))*S1[i,0]+(-np.sin(a)*np.cos(b)*np.sin(c))*S1[i,1]+(np.sin(a)*np.sin(b))*S1[i,2]
        B[3*i+1,5]=(np.cos(a)*np.cos(c)-np.sin(a)*np.sin(b)*np.sin(c))*S1[i,0]+(-np.cos(a)*np.sin(c)-np.sin(a)*np.sin(b)*np.cos(c))*S1[i,1]
        B[3*i+2,3]=(np.cos(a)*np.sin(c)+np.sin(a)*np.sin(b)*np.cos(c))*S1[i,0]+(np.cos(a)*np.cos(c)-np.sin(a)*np.sin(b)*np.sin(c))*S1[i,1]+(-np.sin(a)*np.cos(b))*S1[i,2]
        B[3*i+2,4]=(-np.cos(a)*np.cos(b)*np.cos(c))*S1[i,0]+(np.cos(a)*np.cos(b)*np.sin(c))*S1[i,1]+(-np.cos(a)*np.sin(b))*S1[i,2]
        B[3*i+2,5]=(np.sin(a)*np.cos(c)+np.cos(a)*np.sin(b)*np.sin(c))*S1[i,0]+(-np.sin(a)*np.sin(c)+np.cos(a)*np.sin(b)*np.cos(c))*S1[i,1]
        B[3*i:3*i+3,3:6]=B[3*i:3*i+3,3:6]*k
        #N部分
        D=RR(X[3,0],X[4,0],X[5,0])
        B[3*i,6]=D[0,0]*S1[i,0]+D[0,1]*S1[i,1]+D[0,2]*S1[i,2]
        B[3*i+1,6]=D[1,0]*S1[i,0]+D[1,1]*S1[i,1]+D[1,2]*S1[i,2]
        B[3*i+2,6]=D[2,0]*S1[i,0]+D[2,1]*S1[i,1]+D[2,2]*S1[i,2]
        #L部分
        L[3*i,0]=-(Tx+k*B[3*i,6]-S2[i,0])
        L[3*i+1,0]=-(Ty+k*B[3*i+1,6]-S2[i,1])
        L[3*i+2,0]=-(Tz+k*B[3*i+2,6]-S2[i,2])
        
        B=np.matrix(B)
        L=np.matrix(L)
    return B,L

def Trans(S1,S2): #S1先S2转换,其中S1、S2为mX3的二维数组。返回7参数。
    X=np.array([[0,0,0,0,0,0,1]]).T #7参数的初值
    dX = X # dX为转换参数X的改正数
    j=1
    while min(dX[0:3,0])>0.05 or min(dX[3:6,0])*3600>10**(-7) or dX[6,0]>10**(-7):
        B,L=makeBL(X,S1,S2)
        N,W = B.T*B,B.T*L
        dX=(np.linalg.pinv(N)*W).A   #转换参数的改正数,旋转参数的角度
        X=X+dX
        dX=abs(dX)
        j=j+1
        if j==2000:
            break

5. 方法讨论

这个代码的主要问题有以下两个:
(1)缺少观测值的权阵,这个可以解决。
(2) 进过测试,对于多数的论文案列,改法求解转换参数的精度为0.5~5mm。对于某些模型数据,改法转换精度的误差比较大。因此适用性有限。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wzy路灯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值