背景
Coursera、edX、Udacity是国外三大MOOC平台,在中国用户最多的应该是Coursera。不同平台对于学科的分类有所区别,本文仅对如何爬取Coursera中学科的分类做简要说明。
功能描述
目标:获取Coursera搜索页面中的学科分类,并将结果输出并保存
输入:Coursera平台搜索页面的URL链接,https://www.coursera.org/browse
输出:平台中的学科分类屏幕输出,另外保存为CSV文件
技术路线:requests‐bs4‐re
定向爬虫可行性
Robots协议的使用
对网络爬虫来说,建议遵守但是非约束性,网络爬虫可以不遵守,但是有法律风险。
接下来手动查看Coursera的Robots协议,如图
本实例属于小规模爬虫,数据量小,仅供学习使用,因此可以选择性遵守。
程序的结构设计
步骤1:从网络上获取网页内容;
步骤2:提取网页内容中关于学科分类的信息;
步骤3:将结果保存,并输出到屏幕显示。
实例编写
步骤1中采用通用的爬取网页框架
def getHTMLText(url, code='utf-8'):
'''爬取网页的通用代码框架'''
try:
kv = {'User-agent': 'Mozilla/5.0'}
r = requests.get(url, timeout=30, headers=kv)
r.raise_for_status()
r.encoding = r.apparent_encoding
return r.text
except:
print("爬取失败")
步骤2的重点在于分析从何处能迅速找到分类信息,(在界面处点击F12或者Fn+F12),如图:
具体的实现方法
def getCourselist(stockurl, ilt):
html = getHTMLText(stockurl)
soup = BeautifulSoup(html, 'html.parser')
ul = soup.find_all('div', attrs={'class': re.compile('.*slick-slide.*')})
res = []
for i in range(len(ul)):
all_a = ul[i].find_all('a')
for i in range(len(all_a)):
cour_name = all_a[i]['href']
if ('browse' in cour_name):
ans = re.findall("[^/]+(?!.*/)",
cour_name) #用正则表达去掉 “/browse/”
if ans[0] not in res:
res.append(ans[0])
return res
步骤3可以用Python中的csv库实现,当然也可以用pandas库实现。
全部的代码如下:
import requests
import regex as re
from bs4 import BeautifulSoup
import csv
def getHTMLText(url, code='utf-8'):
'''爬取网页的通用代码框架'''
try:
kv = {'User-agent': 'Mozilla/5.0'}
r = requests.get(url, timeout=30, headers=kv)
r.raise_for_status()
r.encoding = r.apparent_encoding
return r.text
except:
print("爬取失败")
def getCourselist(stockurl, ilt):
''' 从网页中获取分类信息'''
html = getHTMLText(stockurl)
soup = BeautifulSoup(html, 'html.parser')
ul = soup.find_all('div', attrs={'class': re.compile('.*slick-slide.*')})
res = []
for i in range(len(ul)):
all_a = ul[i].find_all('a')
for i in range(len(all_a)):
cour_name = all_a[i]['href']
if ('browse' in cour_name):
ans = re.findall("[^/]+(?!.*/)",
cour_name) #用正则表达去掉 “/browse/”
if ans[0] not in res:
res.append(ans[0])
# print(ans)
return res
def save_to_csv(res):
'''将学科分类结果存储到csv'''
output_file = r"D:\CSDN\coursera_search\couseracatg.csv" #根据需要更改路径
with open(output_file, 'w', newline='') as f:
writer = csv.writer(f, dialect='excel')
writer.writerow(res)
def printCourselist(courselist):
'''显示分类结果'''
print("Coursera里学科分类为:")
for cu in courselist:
print(cu)
def main():
courseurl = "https://www.coursera.org/browse"
courselist = []
courselist = getCourselist(courseurl, courselist)
save_to_csv(courselist)
printCourselist(courselist)
if __name__ == "__main__":
main()
结果如图
实例优化
本实例属于比较简单的例子,没有提取出各种分类中的课程信息,下一个文档将介绍在本次实例结果之上,如何确定每一个学科分类中最受欢迎的课程或专项(specialization)。当然其他不足希望看到的各位同仁积极指正。
附加说明
网络爬虫的思想是将网页作为一个API接口,并从中获取需要的信息,即“The Website is the API”,其中最关键的工作是通过研究网页结构,找到如何提取所需要的信息。