Coursera学科分类爬虫实例介绍

背景

Coursera、edX、Udacity是国外三大MOOC平台,在中国用户最多的应该是Coursera。不同平台对于学科的分类有所区别,本文仅对如何爬取Coursera中学科的分类做简要说明。

功能描述

目标:获取Coursera搜索页面中的学科分类,并将结果输出并保存
输入:Coursera平台搜索页面的URL链接,https://www.coursera.org/browse
输出:平台中的学科分类屏幕输出,另外保存为CSV文件
技术路线:requests‐bs4‐re

定向爬虫可行性

Robots协议的使用
对网络爬虫来说,建议遵守但是非约束性,网络爬虫可以不遵守,但是有法律风险。
在这里插入图片描述
接下来手动查看Coursera的Robots协议,如图
在这里插入图片描述
本实例属于小规模爬虫,数据量小,仅供学习使用,因此可以选择性遵守。

程序的结构设计

步骤1:从网络上获取网页内容;
步骤2:提取网页内容中关于学科分类的信息;
步骤3:将结果保存,并输出到屏幕显示。

实例编写

步骤1中采用通用的爬取网页框架

def getHTMLText(url, code='utf-8'):
    '''爬取网页的通用代码框架'''
    try:
        kv = {'User-agent': 'Mozilla/5.0'}
        r = requests.get(url, timeout=30, headers=kv)
        r.raise_for_status()
        r.encoding = r.apparent_encoding
        return r.text
    except:
        print("爬取失败")

步骤2的重点在于分析从何处能迅速找到分类信息,(在界面处点击F12或者Fn+F12),如图:
在这里插入图片描述
具体的实现方法

def getCourselist(stockurl, ilt):
    html = getHTMLText(stockurl)
    soup = BeautifulSoup(html, 'html.parser')
    ul = soup.find_all('div', attrs={'class': re.compile('.*slick-slide.*')})
    res = []
    for i in range(len(ul)):
        all_a = ul[i].find_all('a')
        for i in range(len(all_a)):
            cour_name = all_a[i]['href']
            if ('browse' in cour_name):
                ans = re.findall("[^/]+(?!.*/)",
                                 cour_name)  #用正则表达去掉 “/browse/”
                if ans[0] not in res:
                    res.append(ans[0])
    return res

步骤3可以用Python中的csv库实现,当然也可以用pandas库实现。
全部的代码如下:

import requests
import regex as re
from bs4 import BeautifulSoup
import csv


def getHTMLText(url, code='utf-8'):
    '''爬取网页的通用代码框架'''
    try:
        kv = {'User-agent': 'Mozilla/5.0'}
        r = requests.get(url, timeout=30, headers=kv)
        r.raise_for_status()
        r.encoding = r.apparent_encoding
        return r.text
    except:
        print("爬取失败")


def getCourselist(stockurl, ilt):
    ''' 从网页中获取分类信息'''
    html = getHTMLText(stockurl)
    soup = BeautifulSoup(html, 'html.parser')
    ul = soup.find_all('div', attrs={'class': re.compile('.*slick-slide.*')})
    res = []
    for i in range(len(ul)):
        all_a = ul[i].find_all('a')
        for i in range(len(all_a)):
            cour_name = all_a[i]['href']
            if ('browse' in cour_name):
                ans = re.findall("[^/]+(?!.*/)",
                                 cour_name)  #用正则表达去掉 “/browse/”
                if ans[0] not in res:
                    res.append(ans[0])
                # print(ans)
    return res


def save_to_csv(res):
    '''将学科分类结果存储到csv'''
    output_file = r"D:\CSDN\coursera_search\couseracatg.csv" #根据需要更改路径
    with open(output_file, 'w', newline='') as f:
        writer = csv.writer(f, dialect='excel')
        writer.writerow(res)
def printCourselist(courselist):
    '''显示分类结果'''
    print("Coursera里学科分类为:")
    for cu in courselist:
        print(cu)

def main():
    courseurl = "https://www.coursera.org/browse"
    courselist = []
    courselist = getCourselist(courseurl, courselist)
    save_to_csv(courselist)
    printCourselist(courselist)


if __name__ == "__main__":
    main()

结果如图
在这里插入图片描述

实例优化

本实例属于比较简单的例子,没有提取出各种分类中的课程信息,下一个文档将介绍在本次实例结果之上,如何确定每一个学科分类中最受欢迎的课程或专项(specialization)。当然其他不足希望看到的各位同仁积极指正。

附加说明

网络爬虫的思想是将网页作为一个API接口,并从中获取需要的信息,即“The Website is the API”,其中最关键的工作是通过研究网页结构,找到如何提取所需要的信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值