MONET-Pytorch模型降低3倍内存 | MEMORY OPTIMIZATION FOR DEEP NETWORKS

第一次见到这个领域的文章,Mark一下
论文地址:https://arxiv.org/pdf/2010.14501.pdf
Github地址:https://github.com/utsaslab/MONeT.
在这里插入图片描述

ABSTRACT:

深度学习正在缓慢但稳定地遇到内存瓶颈。 在过去五年中,顶级GPU的张量计算增加了32倍,而总可用内存仅增加了2.5倍。 由于训练大型网络需要更多的内存来存储中间输出,因此这阻止了研究人员探索更大的体系结构。 在本文中,我们介绍了MONET,这是一种自动框架,可将深度网络的内存占用量和计算开销最小化。 MONET共同优化了checkpointing计划和各种操作的实施。 MONET能够胜过所有先前的手动调整操作以及automated checkpointing。 对于各种PyTorch模型,MONET将总内存需求减少了3倍,而计算开销为9-16%。 对于相同的计算成本,MONET所需的内存比当前最新的自动checkpointing框架少1.2-1.8倍。

EXPERIMENTS:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值