关注一下实时视频插帧算法
论文地址:https://arxiv.org/pdf/2011.06294.pdf
Github地址:https://github.com/hzwer/arXiv2020-RIFE
Abstract:
我们为视频帧插值(VFI)提出了一种实时中间流估计算法RIFE (Real-Time Intermediate Flow Estimation)。 现有的大多数方法首先估计双向光流,然后将它们线性组合以近似中间流,从而导致运动边界周围出现伪影。 我们设计了一个中间流模型IFNet,它可以直接估计从粗到细的中间流。 然后,我们根据估计的中间流对输入帧进行warp,并采用融合过程来计算最终结果。 基于我们提出的leakage蒸馏技术,RIFE可以进行端到端的训练并获得出色的性能。 实验表明,RIFE比现有的基于流的VFI方法要快得多,并且可以在多个基准上达到最新的指标。
Introduction:
视频帧插值(VFI):
旨在合成视频的两个连续帧之间的中间帧,并广泛用于提高帧速率和增强视觉质量。VFI还支持各种应用,例如慢动作生成,视频压缩和用于视频运动去模糊的训练数据生成。 此外,以实时速度运行在高分辨率视频(例如720p和1080p)上的VFI算法具有更多潜在的应用,例如在客户端播放器上播放更高帧频的视频,为有限的用户提供视频编辑服务 计算资源。
目前VFI的常用方法包括两个步骤:
1)根据近似的光流对输入帧进行warping;
2)使用卷积神经网络(CNN)融合和完善warped的帧。
依据输入帧如何warping,基于流的VFI算法可以分为基于forward warping的方法和基于backward warping的方法。目前主要采用后者的warping方式。给定输入帧 I 0 I_{0} I0, I 1 I_{1} I1,基于backward warping的方法需要从我们希望进行合成的帧It的角度近似中间流Ft-> 0,Ft-> 1。双向流的方法过于繁杂,无法达到实时。此外,也不能很好地消除运动边界伪影问题。
为了解决这些问题,本文首先提出了一个名为IFNet的专门高效的中间流网络,以直接估算中间流。 IFNet采取从粗到精的策略,并逐步提高分辨率。 它通过以递增分辨率运行的连续IFBlock迭代地更新流场。
如上图所示,RIFE是第一个基于流的实时VFI算法,以每秒30帧的速度处理720p视频。 实验表明,RIFE可以在多个公共基准上取得令人印象深刻的性能。
RIFE:
A.Pipeline Overview
如图2所示,给定两帧输入 I 0 I_{0} I0, I 1 I_{1} I1,VFI的目的是生成 t − > ( 0 , 1 ) t->(0,1) t−>(0,1)的中间帧 I t ^ \hat{I_{t}} It^。首先,本文算法通过将输入帧输入到IFNet来直接估计中间流 F t − > 0 F_{t->0} F