感觉实验做的也太少了…很水
https://arxiv.org/pdf/2009.14082.pdf
https://github.com/YimianDai/open-aff
Abstract:
特征融合是来自不同层或分支的特征的组合,是现代网络体系结构中无所不在的一部分。它通常通过简单的操作(例如求和或拼接)来实现,但这可能不是最佳选择。在这项工作中,我们提出了一个统一的通用方案,即注意力特征融合,该方案适用于大多数常见场景,包括短跳跃和长跳跃连接以及在Inception层中引起的特征融合。为了更好地融合语义和尺度不一致的特征,我们提出了多尺度通道注意力模块,该模块解决了融合不同尺度给出的特征时出现的问题。我们还证明了特征图的初始集成可能会成为瓶颈,并且可以通过添加另一个注意力级别(称为迭代关注特征融合)来缓解此问题。在更少参数或网络层的情况下,我们的模型在CIFAR-100和ImageNet数据集上均优于最新的网络,这表明与特征直接融合相比,用于特征融合的更复杂的注意力机制具有持续产生更好结果的巨大潜力。