Triplet Attention -接近无参注意力| Rotate to Attend: Convolutional Triplet Attention Module

参数量方面的确控制的不错,不过Flops和效果方面…还有待观察
https://arxiv.org/pdf/2010.03045.pdf
https://github.com/LandskapeAI/triplet-attention
在这里插入图片描述

Abstract:

受益于在通道或空间位置之间建立相互依赖性的能力,注意力机制最近已得到广泛研究,并广泛用于各种计算机视觉任务中。在本文中,我们研究了轻量但有效的注意力机制,并提出了triplet attention,这是一种通过使用三分支结构捕获跨维度交互来计算注意力权重的新方法。对于输入张量,triplet attention通过旋转操作,然后使用残差变换建立维度间的依存关系,并以可忽略的计算开销对通道间和空间信息进行编码。我们的方法既简单又有效,并且可以轻松地作为附加模块插入经典骨干网络。我们证明了该方法在各种挑战性任务中的有效性,包括ImageNet-1k上的图像分类以及MSCOCO和PASCAL VOC数据集上的目标检测。此外,我们可视化了GradCAM和GradCAM ++结果,提供了对triplet attention表现的广泛见解。大量实验结果证明了我们的直觉,即在计算注意力权重时捕获跨维度依赖性的重要性。

Motivation:

在这里插入图片描述
关键词:跨通道交互信息

作者观察到CBAM中的通道注意力方法虽然提供了显着的性能改进,却不是因为跨通道交互。然而,作者展示了捕获通道交互时对性能会产生有利的影响。此外,CBAM在计算通道注意力时结合了降维功能。这在捕获通道之间的非线性局部依赖关系方面是多余的。

因此,本文提出了可以有效解决跨维度交互的triplet attention。相较于以往的注意力方法,主要有两个优点:

1.可以忽略的计算开销

2.强调了多维交互而不降低维度的重要性,因此消除了通道和权重之间的间接对应

Triplet Attention:

在这里插入图片描述
如上图所示,Triplet Attention主要包含3个分支,其中两个分支分别用来捕获通道C维度和空间维度W/H之间的跨通道交互,剩下的一个分支就是传统的空间注意力权重的计算。

A.网络结构
在这里插入图片描述
具体的网络结构如上图所示:

1.第一个分支:通道注意力计算分支,输入特征经过Z-Pool,再接着7 x 7卷积,最后Sigmoid激活函数生成空间注意力权重

2.第二个分支:通道C和空间W维度交互捕获分支,输入特征先经过permute,变为H X C X W维度特征,接着在H维度上进行Z-Pool,后面操作类似。最后需要经过permuter变为C X H X W维度特征,方便进行element-wise相加

3.第三个分支:通道C和空间H维度交互捕获分支,输入特征先经过permute,变为W X H X C维度特征,接着在W维度上进行Z-Pool,后面操作类似。最后需要经过permuter变为C X H X W维度特征,方便进行element-wise相加

最后对3个分支输出特征进行相加求Avg

B.Z-Pool

对输入进行MaxPooling和AvgPooling,输出2 X H X W特征
在这里插入图片描述
C.代码:


                
Triplet attention是一种通过使用三分支结构捕获跨维度交互来计算注意力权重的新方法。它由三个平行的分支组成,其中两个分支负责捕获通道和空间之间的跨维度交互,而最后一个分支类似于CBAM,用于构建空间注意力。这三个分支的输出通过平均求和来得到最终的注意力权重。Triplet attention的优势在于它能够在计算注意力权重时捕获跨维度的依赖关系,从而提高了性能。它的设计简单而有效,可以轻松地作为附加模块插入经典的骨干网络。实验证明,triplet attention在图像分类和目标检测等各种计算机视觉任务中表现出了良好的性能。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [注意力机制:基于Yolov5/Yolov7的Triplet注意力模块,即插即用,效果优于cbam、se,涨点明显](https://blog.csdn.net/m0_63774211/article/details/130386790)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Triplet Attention -接近注意力| Rotate to Attend: Convolutional Triplet Attention Module](https://blog.csdn.net/weixin_42096202/article/details/108970057)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值