机器学习论文中完全看不懂的数学公式该怎样才能看懂?

最近在看论文的时候,感觉很多公式包括符号和运算符都很复杂,没办法看懂公式的含义并且不知道公式作用是什么?希望尝试运用以下的方法能够好好的学习一下论文当中的公式,不知道实践一个月后会不会有什么效果。
遇到机器学习论文中完全看不懂的数学公式该怎样才能看懂,有没有什么工具可以推导解释计算的啊?

公式看不懂有以下几点原因:

  1. 数学符号没有接触过
  2. 变量符号没懂
  3. 基础不扎实
  4. 不知道怎么构造的

一些建议

一些建议
建议是对于机器学习,更多的是从宏观上了解该某个机器学习方法的作用是什么?输入是什么?输出是什么?可调节的超参数是什么?各个超参数的含义是什么?对于具体的数学公式其实不必做过多的纠结,更多的是理解数学公式背后的物理含义和数学意义。

比如某个机器学习方法的作用是什么?

其实无外乎两大类:监督学习和非监督学习,监督学习又分为分类和回归,非监督学习又分为聚类、降维。因此,对于某个特定的机器学习方法,只要分清它是分类还是回归,抑或是聚类还是降维就可以运用算法了。比如常见的分类算法包括Logistic Regression,Decision tree等,回归算法包括神经网络、线性回归等,聚类包括K-means和DBSCAN,降维主要是PCA。了解各个算法的分类后,就能知道各个算法的作用是什么,具有相同作用的算法在一定程度上是可以互相替代的,只不过针对不同的数据集特征,可能某一算法会表现出更好的学习效果。

输入输出是什么?

对于所有算法,输入都是数据集的特征,不同的在于算法的输出和训练样本。对于分类算法,输出是样本所在的类别;对于回归算法,输出是一个连续空间上的任意实数;因为分类和回归算法都是监督学习范畴,所以训练样本是包含标签的,也就是训练样本是包含输出值的。对于聚类算法,输出同样是样本的类别,不过和分类算法不一样的地方在于,聚类是无监督学习,因此它的训练样本是不包含输出值的。对于降维算法,输出是降维后的样本特征,同样它的训练样本也是不包含输出值的。

可调节的超参数是什么?超参数的含义是什么?

这个也是不同机器学习算法的核心所在,比如k-means算法中可调节的超参数包括聚类中心的数目、样本点间距的度量方法等,其中聚类中心的数目规定了将样本自动划分为几类,显然聚类中心数越多,样本会被分的越精细,但会丢失对样本共性特征的挖掘;若聚类中心数很少,样本被分的越粗,不能体现出各聚类结果间的差异性,因此需要对聚类中心的数目进行试错或通过特定方法进行确定。样本点间距的度量方法包括几何度量、绝对值度量等,它定义了样本间差异性的度量规则,不同的度量规则可能导致不同的聚类结果。
了解了上述基本概念后,实际上就可以利用Python中提供的sklearn库做自己的机器学习算法啦。sklearn库对目前绝大部分机器学习算法做了封装,使用起来特别简单,只要给定输入输出,指定超参数,系统就能自己进行模型参数的学习和训练而常见论文中的公式,大部分都是抄的,并不是真的写了那么复杂的代码,实际上代码都是用的第三方库。

  • 2
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值