点在多边形内 java_java判断某个点是否在所画多边形/圆形内

本文提供了一个Java实现,用于检测给定点是否位于多边形内部(IsPtInPoly类)。通过检查点与多边形边界的交点数量来判断。同时,还包含了一个判断点是否在圆形内的方法distencePC,该方法根据点到圆心的距离与半径的关系来确定。示例代码展示了如何使用这两个方法进行测试。
摘要由CSDN通过智能技术生成

本文实例为大家分享了java判断某个点是否在所画范围内的具体代码,供大家参考,具体内容如下

IsPtInPoly.java

package com.ardo.util.circle;

import java.util.ArrayList;

import java.util.List;

/**

* java判断某个点是否在所画范围内(多边形【isPtInPoly】/圆形【distencePC】)

* @param point 检测点

* @param pts 多边形的顶点

* @return 点在多边形内返回true,否则返回false

* @author ardo

*/

public class IsPtInPoly {

/**

* 判断点是否在多边形内

* @param point 检测点

* @param pts 多边形的顶点

* @return 点在多边形内返回true,否则返回false

*/

public static boolean isPtInPoly(Point2D point, List pts){

int N = pts.size();

boolean boundOrVertex = true; //如果点位于多边形的顶点或边上,也算做点在多边形内,直接返回true

int intersectCount = 0;//cross points count of x

double precision = 2e-10; //浮点类型计算时候与0比较时候的容差

Point2D p1, p2;//neighbour bound vertices

Point2D p = point; //当前点

p1 = pts.get(0);//left vertex

for(int i = 1; i <= N; ++i){//check all rays

if(p.equals(p1)){

return boundOrVertex;//p is an vertex

}

p2 = pts.get(i % N);//right vertex

if(p.x < Math.min(p1.x, p2.x) || p.x > Math.max(p1.x, p2.x)){//ray is outside of our interests

p1 = p2;

continue;//next ray left point

}

if(p.x > Math.min(p1.x, p2.x) && p.x < Math.max(p1.x, p2.x)){//ray is crossing over by the algorithm (common part of)

if(p.y <= Math.max(p1.y, p2.y)){//x is before of ray

if(p1.x == p2.x && p.y >= Math.min(p1.y, p2.y)){//overlies on a horizontal ray

return boundOrVertex;

}

if(p1.y == p2.y){//ray is vertical

if(p1.y == p.y){//overlies on a vertical ray

return boundOrVertex;

}else{//before ray

++intersectCount;

}

}else{//cross point on the left side

double xinters = (p.x - p1.x) * (p2.y - p1.y) / (p2.x - p1.x) + p1.y;//cross point of y

if(Math.abs(p.y - xinters) < precision){//overlies on a ray

return boundOrVertex;

}

if(p.y < xinters){//before ray

++intersectCount;

}

}

}

}else{//special case when ray is crossing through the vertex

if(p.x == p2.x && p.y <= p2.y){//p crossing over p2

Point2D p3 = pts.get((i+1) % N); //next vertex

if(p.x >= Math.min(p1.x, p3.x) && p.x <= Math.max(p1.x, p3.x)){//p.x lies between p1.x & p3.x

++intersectCount;

}else{

intersectCount += 2;

}

}

}

p1 = p2;//next ray left point

}

if(intersectCount % 2 == 0){//偶数在多边形外

return false;

} else { //奇数在多边形内

return true;

}

}

/**

* 判断是否在圆形内

* @param p

* @param c

* @return

*/

public static String distencePC(Point2D p,Circle c){//判断点与圆心之间的距离和圆半径的关系

String s ;

double d2 = Math.hypot( (p.getX() - c.getCC().getX() ), (p.getY() - c.getCC().getY()) );

System.out.println("d2=="+d2);

double r = c.getR();

if(d2 > r){

s = "圆外";

}else if(d2 < r){

s = "圆内";

}else{

s = "圆上";

}

return s;

}

public static void main(String[] args) {

Point2D point = new Point2D(116.404072, 39.916605);

// 测试一个点是否在多边形内

List pts = new ArrayList();

pts.add(new Point2D(116.395, 39.910));

pts.add(new Point2D(116.394, 39.914));

pts.add(new Point2D(116.403, 39.920));

pts.add(new Point2D(116.402, 39.914));

pts.add(new Point2D(116.410, 39.913));

if(isPtInPoly(point, pts)){

System.out.println("点在多边形内");

}else{

System.out.println("点在多边形外");

}

// 测试一个点是否在圆形内

Point2D centerPoint = new Point2D(116.404172, 39.916605);

Circle c = new Circle();

c.setCC(centerPoint);

c.setR(0.0056);

String s = distencePC(point,c);

System.out.println("点是否在圆内:"+s);

}

}

Circle.java

/**

* 圆形类

* @author ardo

*

*/

public class Circle {

private double r;

private Point2D cc;

public void setR(double a){

r = a;

}

public void setCC(Point2D centerOfCir){

cc = centerOfCir;

}

public double getR(){

return r;

}

public Point2D getCC(){

return cc;

}

}

Point2D.java

public class Point2D {

public double x;

public double y;

public Point2D(double x, double y) {

super();

this.x = x;

this.y = y;

}

public double getX() {

return x;

}

public void setX(double x) {

this.x = x;

}

public double getY() {

return y;

}

public void setY(double y) {

this.y = y;

}

}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值