人脸识别之AM-Softmax

论文:Additive Margin Softmax for Face Verification

在此篇论文中,作者提出了新的损失函数,AM_softmax。嗯,我们可以把AM-softmax看做是对A-softmax损失函数的改进,两者是很相似的,我刚写过A-softmax的博客,详情请点击这里。两者最大的不同之处在于:A-softmax是用margin m与相乘,而AM-softmax的margin则是,一个是角度距离(angular margin),一个是余弦距离(cosine margine)。当用传统的softmax作为损失函数的时候,角度距离和余弦距离是等价的,即:,但是当试着去推动边界的时候,余弦距离和角度距离就不再等价了。

回顾一下A-softmax损失函数,公式表示如下:

其中,,m通常是一个大于1的整数,是一个表示推动分类边界难度的超参数。相比较而言,AM-softmax定义更加简单和直观,。为了提高收敛速度,作者又引进一个超参数s,所以AM-softmax的最终形式为:

 

作者对additive margin做了一个直观的分析,用了一个二维特征作为例子,如图1所示,对一个具有二维的特征,正则化后,特征被表示在一个圆中,传统softmax的决策边界即是向量,那么;而AM-softmax是以决策区域替代决策边界,对于类别1的边界为向量,定义W_{1}^{T}P_{1}-m=W_{2}^{T}P_{1}, 那么。更进一步假设所有的类别都具有相同的方差,是类别2的边界向量,那么,所以

图1:传统softmax的决策边界和AM-softmax的决策边界

作者还提出,特征是否正则化处理还取决于图片的质量,高质量的图片提取出来的特征范数比较大,低质量的图片提取出来的特征范数小,那么特征正则化(feature normalization)后,在后向传播的时候,低质量的图片特征会产生更大的梯度,也会获得网络更多的注意力,如下图所示,因此,对于低质量图片的数据集,特征正则化是最适合的。也因此设置s=30。

 

 

 

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马鹤宁

谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值